¢ oo

¢

A}
J

G COCc

Cr i Ky L

{:

()

GOGGOO0O0CE

L Ly gy O K

GO G

SimMatrix User’s Manual Theory of Operation

&3

Chapter 3 - Theory of Operation

3.1 Overview

The SimMatrix co-simulation process comprises three different stages; design assembly, parti-
tioning and co-simulation (Figure 3-1). ;

S iy —

Design
P Source »{ Source jé&—>
) Files Simutator
DeS|gn Partitioning et Co-simulation
— Assembly . Client 1
esign SimMatrix P Client 1 =P oo vor €
Source Database Netlist Rasioe
e’
" +f Client2 |}
P Client 2 71 Simulator [
Netlist
EH _‘ k— ‘k

Figure 3-1. Overview of Co-simulation Processes

The design assembly stage involves compiling native design source files and extracting a hierar-
chical design representation from the design source. This extracted hierarchical design represen-
tation is written into the SimMatrix internal database file. The design assembly process is handled
by a separate program module, called SimPrism.

The partitioning stage implements user specified partition rules to define which segments of the
overall design, stored in the SimMatrix database file, are to be simulated by which of the clients
involved in the co-simulation session. For each design segment partitioned to a particular client,
the SimMatrix partitioner writes out a netlist in the format understood by the client. The client
uses this netlist to simulate its portion of the design during co-simulation.

If the client uses the same file format as the design source, then the partitioner does not generate
a new netlist, but uses those original design source files that are applicable to the partition to be
simulated, instead.

The co-simulation stage initializes and runs all of the client simulators (including the design
source simulator, if applicable) on their respective design partitions until a boundary event
(mixed net, probe or breakpoint), interrupt, or session termination command is encountered.
When a boundary event (spanning simulators) is encountered, SimMatrix synchronizes the sim-
ulators and distributes boundary event information (such as states, currents, or voltages) across

Version 1.7 - July, 1997 3-1



Theory of Operation SimMatrix User’s Manual

simulators. A user-programmable state translation table provides for consistent signal represen-
tation between simulators. SimMatrix arbitrates state changes on boundary events to determine
which simulator drives a net.

Synchronization is required so that signal state changes are propagated across all simulators at
the same point in time. SimMatrix provides user-selectable synchronization schemes that can be
used to optimize performance.

The event transfer process continues until the user interrupts or terminates the co-simulation ses-
sion. When the user interrupts the co-simulation session, new commands can be injected into the
co-simulation that take effect when the co-simulation session is resumed. When the user termi-
nates a co-simulation session, all intermediate files that were created are deleted and all of the
simulators being used are terminated.

3.2 SimMatrix Usage Model

SimMatrix co-simulation controls consist of user commands placed in the design.init file and
commands entered directly into any of the client windows displayed during an interrupt to a co-
simulation session. Commands placed in the design.init file are sourced when a co-simulation
session is invoked. Commands entered directly into a client window are executed when the co-
simulation session resumes.

User commands controlling the design assembly and partitioning processes must be implement-
ed via the design.init file (they cannot be issued from a command line prompt) because they
determine how client netlists are generated, prior to co-simulation. While all of the user com-
mands controlling co-simulation can be implemented through the design.init file, only a subset
of these commands can be issued from a command line prompt.

Except for design assembly related commands, which are mandatory, all commands are optional
and up to the discretion of the user. Proper usage of the design assembly, partitioning and co-sim-
ulation related commands is discussed in Chapter 4.

3.2.1 Invoking the Co-simulation Processes

The three stages that define the overall co-simulation process; design assembly, partitioning and
co-simulation (Figure 3-1) can be executed in various combinations, depending on how a co-sim-
ulation session is invoked.

3.2.1.1 Design Assembly

The processes comprising the design assembly stage are executed by a separate program module,
called SimPrism.

Since the design assembly stage loads a design source into the SimMatrix database, it is usually
only performed once, unless changes are made to the design source files. Design assembly is per-
formed by executing the following command from a Unix command line prompt:

gimprism -4 design [+compile] [+extract]

The two aspects of design assembly, 1) compiling the design source files and 2) extracting the hi-
erarchical design representation can be invoked separately or together, depending on command
line options provided to the simprism -d command.

3-2

Version 1.7 - July, 1997



Co O 1 A

O GCo

i Ll
4 Fl

(£
4

GGG G Y Q

(:

}

Cy €7 G

Y €

C

Y ¢

CF Cx £

C:

O

]

SimMatrix User’s Manual Theory of Operation

The simprism -d command sources the following commands from the design. init file:

simprism system compile_exec files
simprism extract source

The first line in the design. init file executes the native design source compiler to compile all of
the relevant design source files that comprise the design to be co-simulated. The second line ex-
tracts a hierarchical image of the design source design representation and writes this into a Sim-
Matrix internal design representation.

The first time a co-simulation is to be run all relevant design source files need to be compiled and
the entire design hierarchy needs to be extracted. After that, if the original design source files are
modified or added to, then those files and any other files that might have been affected by the
change must be recompiled. If any of these design source file changes affect the structure of the
design, then the design hierarchy needs to be re-extracted and re-written to the SimMatrix data-
base. However, since the SimMatrix database only represents design structure, not behavior, if
the design source changes only involved changes in behavior, then the design hierarchy does not
have to be re-extracted.

NOTE
The +compile and +extract options will only be performed if the de-
sign.init file contains the compile related and extract related commands. If
the design.init file does not contain the supporting commands, the processes
cannot be executed.

3.2.1.2 Partitioning and Co-simulation

The partitioning and co-simulation executable consists of the same basic command followed by a
different set of options (depending upon whether partitioning or co-simulation is to be executed).
This command is issued twice; once for partitioning and once for co-simulation.

The first time a co-simulation session is run both the partitioning and co-simulation stages need
to be executed. After that, the partitioning stage only needs to be executed if a change is made that
affects a client netlist, e.g, how the design is partitioned. The command to execute partitioning
and co-simulation is as follows:

simmatrix -4 design [-compile]

The default for invoking SimMatrix is to run co-simulation without partitioning. In order to run
partitioning, the -compi 1e option must be specified. To run both partitioning and co-simulation,
the simmatrix -d command needs to be issued twice.

To partition the design representation created in para. 3.2.1.1, the simmatrix -d command
sources the following commands from the design.init file:

simmatrix_partition
import design.ext.db

The simprism simmatrix_partition command invokes the SimMatrix partitioner on the hi-
erarchical design representation that was extracted in para. 3.2.1.1. This design is imported by the
import design.ext.dbcommand which supplies the design name and the design source type.

Version 1.7 - July, 1997 3-3



Theory of Operation

SimMatrix User’s Manual

3.3 Design Assembly

Design assembly involves collecting all design components to be used, compiling the design and
generating the hierarchical image. The design components are collected in accordance with stan-
dard commercial practices. The design is compiled using the design source specific compilation

program. Following compilation, the hierarchical image is generated by executing the extract

command.

3.3.1 Design Assembly Flow

The design assembly process requires that SimMatrix read in design information from the design
source and create an internal hierarchical representation of the design source design in SimMa-
trix.

The compi le program compiles all of the design source files into the binary files that are used by
the database writer togenerate the design.mti.dbfile for simmatrix -compile.The name
of the compile program is specific to the format of design source files being used. The database
writer is a custom integration program that enables a design representation from the design
source to be scanned and rewritten into a standard hierarchical design representation used by
SimMatrix. The design.ext .db file contains the complete SimMatrix hierarchical design repre-
sentation (Figure 3-3). The extract command invokes the database writer, supplying it with the
design source specific command line arguments needed to create the design.mti.db file.

L]
—>a compile
L]

Bina
Source st
simprism -d design X e
database writer

L extract
L]

Legend

sdesign.init file commands

Figure 3-2. Design Assembly Process Flow Diagram

34

Version 1.7 - July, 1997

G G B



¢ C

S T AN S I 3

€
4

¢ (

(

O GG GO

octO00aGeo0aoaood

SimMatrix User’s Manual Theory of Operation

NOTE
The translation of design source desiﬁn representation into the SimMatrix Data
Base design representation is controlled by processes that were developed for
the ?eciﬁc design source to SimMatrix integration being used. These processes
are described in the SimMatrix Database Integration manual, PN IM002.

Figure 3-3. SimMatrix Database Design Representation (design.ext.db)

3.4 Partitioning

When SimMatrix is invoked by entering the simmatrix -d design command (Figure 3-4), the
commands in the design. init are sourced by the simmatrix -compile program which
launches SimMatrix processes to generate the appropriate client netlist file(s) for each integrated
client. As shown in Figure 3-4, the sourced commands from the design.init file (shown en-
closed by dotted lines) represent user inputs to the partitioning process.

Figure 3-4 illustrates the elements involved in the overall partitioning process. The SimMatrix
partitioning tool automates the partitioning process by implementing partition rules that are an-
notated to native design source files (Appendix A) and/or placed in the design. init file. From
this information, SimMatrix identifies all design blocks pertaining to each simulator, determines
all nets that cross simulator boundaries (mixed nets), and automatically generates inter-simulator
connectivity information for the integrated clients. SimMatrix then generates the appropriate
netlist files to be simulated by each client.

Version 1.7 - July, 1997 3-5



Theory of Operation SimMatrix User’s Manual

Edited
Source Files
5 Bina | A
ource Files ; ; Binary Edited
design. le. ry Edi
< Source Files

simmatrix -compile

A 4

y

il

design.mti.db
» client nellister »] Client Netlist
eSS EERRSRERSR L
. [
2 simmatrix_partition y——
]

A 4

" v
fTassssssensend
e B compile_to_simname —)| ; : I
s+ SimMatrix 3 : Binary Netlist

L)
s Commands

Legend

:desigm. init file commandsa

Figure 3-4. Partitioning Process Flow Diagram

The simmatrix_partition command invokes the simmatrix -compile program which be-
gins the process of implementing the various SimMatrix commands in the design. init file. The
most common SimMatrix command is partition, which is used to define which cells in the
overall design are to be simulated by which client.

For any particular partitioning scenario, one of the client simulators involved in the co-simulation
session (the primary client) must be designated as the owner of the top cell in the design being
simulated (Simulator A in Figure 3-5). The -top argument to the partition command deter-
mines which simulator this is.

NOTE
The primary client generally runs in the environment of the design source and
simulates using a set of edited design source files.

NOTE
The partition command includes options that address a wide variety of pos-
sible partitioning scenarios. These options are explained in more detail in
para. 4.3.2.

As shown in Figure 3-1, the partitioning process can generate two different kinds of files for sim-
ulation, depending on the relationship between the client simulator and the design source. If the
design source is written in the native language of the client simulator, then the partitioner re-uses
and edits those design source files that are applicable to that segment of the overall design being
partitioned. If the client simulator uses a language different from the design source, then SimMa-
trix generates a netlist for the client simulator in the netlist format recognized by the client simu-
lator.

3-6

Version 1.7 - July, 1997

o T Lo Lo Ba Eo £

-

(.-\ gi (-\ (-\ C;% (- -C\ C.‘ g—« (-4. Lr‘. -(—‘\ (—t Qh.(*-\ (-'\(-\ Coa

Lok e & s

k.

£

'



'( '

OV GTCy O O

C: o €0

¢ ¢ C

ks

c¢cCu oo

&

'

¢ G

oG OO ¢ G

)

SimMatrix User’s Manual Theory of Operation

The client netlister is a custom integration program that enables a SimMatrix hierarchical
design representation (created by the database writer) to be written into a hierarchical design rep-
resentation format that is recognized by the client simulator.

NOTE
The translation of SimMatrix hierarchical design representation into a client
netlist format is controlled by the processes that were developed for the specific
client simulator to SimMatrix integration being used. These processes are de-
scribed in the SimMatrix Integration Development Environment manual, PN
IMO001.

Some of the other SimMatrix commands that can be sourced are described in Chapter 4.

Design Partition to Design Partition to
Simulator A Simulator B

Figure 3-5. Possible Design Partitioning Scenario

Figure 3-6 shows the design representations that are created for two client simulators based on
the partitioning rules shown in Figure 3-5. SimMatrix retains name space mapping in the design
partitions by adding the necessary levels of hierarchy from the design partition to the top cell in
the original unpartitioned design (Figure 3-3). This is only required for those clients not owning
the top cell in the overall design.

Also, if additional levels of design hierarchy exist in the client representation, below what could
be represented in the original design source, then that portion of the client netlist can be imported
and attached (in native client netlist code) to the generated client netlist (Figure 3-7).

Version 1.7 - July, 1997 37



Theory of Operation SimMatrix User’s Manual

3.4.1 Shadow Generation for Exported Blocks

During partitioning SimMatrix creates a shadow representation of the design segments partitioned
to all other simulators and attaches this to the design representation used by the primary client
(Figure 3-6). The shadow design representation enables the primary client’s environment to inter-
act with the corresponding cells in the design segments partitioned to the other integrated simu-
lators. This interaction depends on the capabilities of the primary client’s environment and can
include such things as dropping probes, monitoring waveforms, inputting stimulus, etc.

Added To Preserve
Name Space Mapping

Simulator A Simulator B

Shadow
Netlist

Figure 3-6. Shadow Generation for Exported Block

3-8

Version 1.7 - July, 1997

(S G o

-~

¢

GG S

L

(-‘5 ;(’*-\ Gy A



e 0T

S L O &

c Cccc o

- £

O

£

GO GO0 G

OO0 00 G

SimMatrix User’s Manual Theory of Operation

3.4.2 Placeholder Generation for Imported Blocks

The partitioning function allows for the design representation of cells from within the partitioned
block to be imported from an outside library, rather than being determined by the overall design
representation. For example, if a particular cell is instantiated from a library in the client simulator
(Simulator C), the partitioning function can be specified to import the description of the cell from
the imported library instead of the overall design representation (Figure 3-7). This way the netlist
created for the client only instantiates the specific cell, not the netlist hierarchy underneath it.

Any design representation in the primary client below the imported block is pruned from the pri-
mary client and a placeholder is created in the primary client for the cell designated as an import.
Since imported blocks have no design representation in the primary client, they are not directly
accessible for interaction with the primary client’s environment.

Added To Preserve
Name Space Mapping

Simulator A

Im;loo‘r:l:d

Simulator C

Figure 3-7. Placeholder Generation for Imported Block

Version 1.7 - July, 1997 3-9



Theory of Operation SimMatrix User’s Manual

3.4.3 Distributed Simulation >

Partitioning a design involves specifying the design object to be partitioned and the target simu-
lator that will simulate that object. Specifying the target simulator involves defining the client
simulator as well as the host computer and cpu process that the client will be running on. The
client simulator taken in conjunction with the host computer and cpu process define the target
solver for a particular design partition.

There are primarily two types of designs that are good candidates for distributed simulation:

e large designs with partitions exceeding available memory.
¢ designs using slower, high accuracy simulators, e.g., SPICE.

The concept of a solver as the target for a design partition provides the vehicle that enables design
partitions to be simulated on different hosts and even different cpu processes within a host. This
enables large designs to be segmented for simulation across a network of hardware systems. It
also enables a partition being simulated by a slower, high accuracy simulator to be performed on
a faster machine.

Figure 3-8 illustrates a complex partitioning scenario that utilizes all of the parameters for speci-
fying a target solver (client, host, cpu process). During the partitioning, SimMatrix creates a client
socket interface for each solver so that it can communicate back and forth with each partition. As
can be seen from the illustration, different client simulators can be run on different process within
the same host.

Local Host
(Default) Host 1
i Client Client b
Socket Sol(g:;t Partition 1
Interface Interface Client 1
v
Host 2
Client i Client h
ien i
Socket e 34 Socket Partition 2
Interface Interface Client 2
e — — e — — — — —d
Client Client :
Socket [€ »] Socket Partition 3
Interface Interface Client 3
e _
Partion8 | SimMatrix
Client 1 Host 3
Client ([ Cient | Partiton4 )
Socket j¢——p] Socket Client 2
Interface Interface | CPU Process 1
Client SC':I,igknt P&rgn% 5
SOCKE! B ot n
Interface Interface | CPU Process 2
Client Client Fhr_ﬁtion 6
Socket Socket Client 3
Interface Interface | CPU Process 3
e _J

Figure 3-8. Partitioning for Distributed Simulation

3-10

Version 1.7 - July, 1997

¢

~ :.h \rl

(

NS

Lo O,

e

\Q..") ¢ \

G

A\ Gy G G

Cy B 4y O

rr

' L‘\ ‘“C_'_‘( < \ -("\ (‘i_t :(“3 E g‘ ('_._.‘ % C‘\ (‘\



!

i

GV O ET 6

L

(‘.

-

_(,,_

. : € C

¢ C GG G

TG

SimMatrix User’s Manual Theory of Operation

Chapter 5 provides information on how to obtain maximum performance using distributed sim-
ulation.

3.4.4 Legal Partitions

SimMatrix supports virtually any partitioning scheme that the user can devise. This includes nest-
ed design partitions (donuts) and isolated partitions (islands) (Figure 3-9).

Primal
Client 1 (Top)

Client 2
Island

Client 2
Client 1 Ferifon

Client 2 Client 2

Island

Nested Partition
(Donut)

Figure 3-9. Legal Partitions

3.4.5 Conflicts

The client integration to SimMatrix handles conflicts between simulators regarding such issues as
object names, design representation, and representation of nets and ports. If problems revolving
around these issues do occur, please consult your integration engineer.

Version 1.7 - July, 1997 3-11



Theory of Operation SimMatrix User’s Manual

3.5 Co-simulation -

After successfully partitioning the design in preparation for co-simulation, the user can invoke
SimMatrix to perform co-simulation (para. 3.2.1.2). The co-simulation process breaks down into
initialization and runtime stages. Figure 3-10 shows a typical functional flow for a co-simulation
session. '

3.5.1 Initialization Stage

The initialization stage goes through the following processes:

e Initialize client

¢ Parse netlist

* Registering mixed nets, probes, and breakpoints.
* Initialize simulator state

¢  Find initial starting point

A simulation session begins with SimMatrix instructing each client simulator initializing. SimMa-
trix then instructs each client to open one or more netlist files created by the netlist writer, and
parse their contents. Upon completion of the parsing function, SimMatrix instructs each client to
register all mixed nets, probes, and breakpoints in its design partition.

; NOTE
Mixed nets must be registered during the initialization stage whereas probes
and breakpoints can be registered during the initialization stage or they can be
injected during the runtime stage (para. 3.5.2.1).

SimMatrix then instructs each client to initialize its circuit partition to some initial operating point.
This resets each client’s notion of time to 0, releases all forced values on probes, and initializes the
state of every net. In digital simulators, the initial state of every net is usually defined by the
simulator. For analog simulators, the initial state of every net results from finding a stable dc
operating point for the circuit. :

Each simulator performs at least one initialization cycle. At the end of this initialization, the re-
sulting states of mixed nets are exchanged between simulators. After any resultant state changes
have been made and the dc solution settles, SimMatrix begins to coordinate the active co-simula-
- tion session.

Version 1.7 - July, 1997

o

1

(¢

Le L

R AT S S S G Gl T S A G A S G G G ¢

bocclt ep

¢



¢ C C CC

(

("

g

(

C U &« €& ¢

¢ &

“C

SimMatrix User’s Manual

Theory of Operation

- S e S . . .y

( simmatrix -d design. )

i

Initialization =

[ Initialize clients.

r

| Parse netlists.

v

Register mixed nets, probes and
breakpoints.

h A

[ Initialize state on all nets.

h 4

Load simulation related commands
from design.init file

Co-simulate.

Synchronize clients.
Transfer signal state to SimMatrix.

Mixed net, probe
or breakpoint
encountered?

¢ YES

L

Enter command(s)
Resume simulation

X

- N

5 ~
- Session ~

e YES —¢ _  interupted? . ¥

< ~ -

X

- ~
- Lo~
- Session -

NO—e _ terminated? _ *
~ -
~S_~

vEs

( Exit simulation session. )

Figure 3-10. Co-simulation Flow

Version 1.7 - July, 1997

3-13



Theory of Operation SimMatrix User’s Manual

3.5.2 Runtime Stage -

After initialization, the runtime stage starts up as a regular simulation session in the environment
of the primary client (the client owning the top cell of the overall design). When SimMatrix detects
a mixed net to a design segment partitioned to another simulator, it transfers control of the co-
simulation session to that simulator. During the co-simulation session, only the User Interface
(UI) of the controlling simulator is active.

While the co-simulation session is running, each client simulates that portion of the overall design
partitioned to it until a boundary event (mixed net) is encountered. When a mixed net (spanning
simulators) is encountered, SimMatrix synchronizes the simulators and distributes boundary
event information (such as states, currents, or voltages) across simulators. A user-programmable
state translation table provides for consistent signal representation between simulators. SimMatrix
arbitrates state changes on mixed nets to determine which simulator drives a mixed net.

Synchronization is required so that boundary event information occurs in all simulators at the
same point in time. SimMatrix manages the synchronization of integrated simulators based on an
internal time tick of one femtosecond (1fS). SimMatrix also provides for the selection of an event-
based synchronization scheme to optimize performance.

The mechanism used to gather and transfer boundary events varies from one simulator to anoth-
er, and can occur through direct memory transfer (subroutine or shared memory implementa-
tion) or through inter-process communication (over Ethernet), if multiple workstations are being
used. SimMatrix automatically selects the highest performance communication vehicle available
for each simulator. The simulation session appears identical regardless of the communication ve-
hicle utilized.

The event transfer process continues through the entire simulation session, pausing only if the de-
signer wishes to interrupt and interact with the co-simulation session. When the simulation ses-

sion terminates, all intermediate files that were created are deleted and all of the simulators being
used are terminated.

If no breakpoints are triggered, simulation time advances until the specified interval elapses, at
which point the simulation terminates and control is returned to the user.

3.5.2.1 Boundary Event Processing

Signal states are communicated to and from SimMatrix whenboundary events (mixed nets, probed
nets, or breakpoints) are encountered. Mixed nets are defined during the netlisting process and

are registered during initialization of the co-simulation session (para. 3.5.1). Probed nets and break-
points can be registered during initialization or incrementally after a co-simulation session begins.

Every time a signal (mixed net, probe or breakpoint) is communicated to or from SimMatrix, a
state translation function is executed.

When a client is simulating and it encounters a mixed net, probe or breakpoint, it drives the net
by forcing a new state on that net and passes the value to SimMatrix, so that SimMatrix can
propagate the change in state of the net to other simulators.

3-14

Version 1.7 - July, 1997

-("‘\ (‘v\ Ll. L"‘ g*-\f (-’." ("k (-«. Lt (.1 \(-( L\ ('\. C'l L( L‘l Q"i L\ C't ('\ 'g'& C‘ Y (‘-\ -Q--r. ﬁ-'-«-,(-s

r( . T

(

Lo«

C



- * K

{

¢ (. T

¢ £ ¢ € ¢

(

(

SimMatrix User’s Manual Theory of Operation

3.5.2.1.1 State Translation

Signal state representation, while consistent within any one particular simulator, varies between
diverse simulators, especially if one of the simulators is digital and the other is analog. As such,
it is critical that signal states being passed between diverse simulators (on mixed nets) be as
consistent as possible. This consistent signal state representation is achieved by point-to-point
signal mapping between simulators, or by mapping to the SimMatrix intermediate type, Sx Digital
(Figure 3-11).

SimMatrix

Point to Point Type Conversion

Sx Digital

Type

Type Conversion Using SimMatrix Abstract Data Types

Figure 3-11. Type Conversions using Point to Point and SimMatrix Intermediate Types

The point to point type conversion produces the best co-simulation performance because only a
single conversion process needs to be executed. Converting to SimMatrix intermediate types re-
quires a dual conversion process from Mysim to the intermediate types and then from the inter-
mediate types to another simulator. The benefit of converting a simulator’s types to the SimMatrix
intermediate types is that it will be compatible with any other simulator whose types have also
been converted to the SimMatrix intermediate types. In such a case, a direct point to point con-
version path does not have to be available between integrated simulators. The default type map-
pings can be changed by using the remap_type command (Table 4-1).

Version 1.7 - July, 1997 3-15



Theory of Operation SimMatrix User’s Manual

3.5.2.1.2 Mixed Nets 2

Mixed nets are registered as in, out, or bidirectional types. An in mixed net means that the
state of that mixed net in the client gets changed to something else via SimMatrix. An out mixed
net means that the client provides the source of a state change to an associated mixed net via
SimMatrix. A bidirectional mixed net can both be changed and be the source of a change from/to
SimMatrix.

Signal flow direction between components connected by mixed nets is the same as signal flow di-
rection between those components in the original design source. If SimMatrix cannot determine
signal direction during partitioning, it will be assigned to be bi-directional.

3.5.2.1.3 Probes

Probes are normally placed by a user to collect simulation (waveform) data for display on the
screen. SimMatrix monitors all probed nets and report any state/voltage changes occurring at the
probed net in a similar manner as the reported state changes for outgoing or bidirectional mixed
nets.

3.5.2.1.4 Breakpoints

Breakpoints are used to detect certain state conditions within the design, and typically to take
some action, such as issuing an interrupt, when the state has been detected. When a breakpoint is
encountered, the breakpoint reports a state change to SimMatrix in a similar way the state changes
are reported for mixed and probed nets.

3.5.2.2 Synchronization

When a boundary event occurs between integrated simulators, SimMatrix synchronizes the inte-
grated simulators so that they are at the same point in time. This enables data to be reliably ex-
changed between integrated simulators.

SimMatrix uses two types of synchronization schemes; 1) look-ahead and 2) optimistic. Look-
ahead synchronization is used for digital simulation and optimistic synchronization is used for
analog simulation. In a mixed simulation (digital and analog co-simulators) environment, a look-
ahead or optimistic synchronization will take place, depending on which simulator contains the
synchronizing boundary event. If it is the digital simulator, the analog simulator will employ opti-
mistic synchronization to synchronize to it. If it is the analog simulator, the digital simulator will
employ look-ahead synchronization to synchronize to it.

3.5.2.2.1 Look-ahead Synchronization

Look-ahead synchronization allows co-simulators to execute asynchronously until a boundary
event (requiring synchronization) is reached. Between synchronization points, each co-simulator
operates sequentially with the other simulators, the sequence being determined by which simu-
lator has the next event to be processed.

SimMatrix arbitrates between the integrated clients to determine which simulator has will have
the next event to be processed and instructs that simulator to simulate until it’s next event.

This process repeats for the next closest next event (among all connected simulators), until a bound-
ary event is encountered. When a boundary event is encountered, all simulators, except the one

that advanced to the next (boundary) event, will advance to the time of the boundary event, and
all simulators will be synchronized to the same time.

3-16 Version 1.7 - July, 1997

«'E'\_L'\ k'l ("’t ('l ('\ ('i ("l ('l (l ('L ("1 (‘( \('

g‘f—, (‘1; (-{ L\ .Q{ (‘s Ll L" Q‘\ .(‘-‘. S"‘ g"’ -("‘ -("‘ (

C,



{

C T LU C

.(-

C- - ¢

(_‘ (, (—.- (u_ C—l‘ C*!

-

o8

"

G & £ &

(&

T

SimMatrix User’s Manual Theory of Operation
£2 SimA E6 Sim A E9
Sim A ™ 2%
m )l )]
1 ! Boundary
SimB
E4 : E7: / Event
Sim B 2 P 0
I 1
! SimC !
E1 E3 E5! 1 E8
SimC 3¢ 3 /N ————
Boundary
Event

Figure 3-12. Look-Ahead Synchronization

3.5.2.2.2 Optimistic Synchronization

During optimistic synchronization, each of the co-simulators advance (in parallel) through next
events until they encounter a boundary event. The times of each simulator boundary event are
provided to SimMatrix for arbitration so that SimMatrix can determine which simulator encoun-
tered a boundary event at the earliest time. The time of the earliest encountered boundary event
becomes the synchronizing boundary event, i.e., the time to which all the other co-simulators must
synchronize.

SimA
Last Synchronizing
Synchronized Boundary
Event Event
11 2
Sim A 2 o
| I A(_i‘_\_ranca
ime
. N
Sm®e *w )

backtrack

Simtil v!

SimB
Time Step

Figure 3-13. Optimistic Synchronization

The client with a later occurring boundary event is instructed to backup to its last event that
occurred prior to the synchronizing boundary event. The co-simulators must then simulate from the
point in time backtracked to, to the same time as the synchronizing boundary event.

Version 1.7 - July, 1997 3-17



Theory of Operation SimMatrix User’s Manual

3.5.2.2.3 Event-Based Synchronization

In some cases, a design partition exists on a synchronous boundary between two cells where
communication is important only when a clock occurs. For example, a pipelined multiplier may
generate many intermediate results on its output before a clock latches a final result. Normally,
boundary event traffic and synchronizations are required for each of the intermediate results, even
though the data has no immediate value, until the clock latches the final result.

In this situation, you might be able to reduce backplane overhead by using event-based synchro-
nization, which specifies the signal (event) to synchronize on. Event-based synchronization re-
duces the number of synchronizations, but has no affect on event traffic.

SimMatrix provides the sync_signal command (para. 4.3.3.2) that can be used to set the Sim-
Matrix synchronizations to occur during specific boundary events.

3.5.2.3 Interrupt Handling

An interrupt can be issued at any time during a co-simulation session from the controlling client
environments. An individual solver can be interrupted asynchronously by using it’s native inter-

rupt facility (usually <CTRL C>) from within its own control window, or synchronously by issuing
the SimMatrix pause command from any of the other clients control window to the target client.

Both types of interrupts disable all other client environments and suspend the co-simulation ses-
sion until the interrupted client resumes the co-simulation session.

Asynchronous interrupts retain simulation control for the interrupted client. Synchronous inter-
rupts propagate the interrupt from one client to the other and simulation control is retained by
the interrupting client.

Asynchronous interrupts can be issued by a controlling simulator at any time during a co-simu-
lation session.

A synchronous interrupt is immediately propagated to the targeted client, where it is serviced as
soon as it is safe to do so.

Two conditions can cause a delay before an interrupt; 1) the targeted client might process inter-
rupts only at designated times, and 2) co-simulator synchronization might delay the servicing of
the interrupt until the client is active.

During an interrupt, the interrupted client can issue new simulator commands that will be prop-
agated into the co-simulation session once the co-simulation session is resumed. Those com-
mands can be issued directly to the client controlling the co-simulation session, or they can be
propagated to any other client involved in the co-simulation session.

Resuming from an interrupt (whether asynchronous or synchronous) gives control back to the in-
terrupting clients environment.

3.5.2.4 Debugging

SimMatrix preserves the User Interface (Ul) and debugging systems used by a client, but they are
only active when that client has control of the simulation. As a result, if a synchronous interrupt
is issued from another client, then the issuing client has control of the simulation, and graphical
waveform functions for the interrupted client will be disabled until it has control of the simula-

tion.

Version 1.7 - July, 1997

C L0 GS

K

(' Py



\(‘

&

o0 U

¢ C T

C 0 € C L T

C

.

(-\ ( - ("J

(@

C’

¢ & G € O ¢

SimMatrix User’s Manual Theory of Operation

SimMatrix debugging commands to add /delete breakpoints and probes, and to view nets and
ports can be issued to any client in the co-simulation session.

When encountered, breakpoints issue a synchronous interrupt to the client in which the break-
point occurred.

The design environment of the primary client can be used to examine the overall design hierarchy
and signal states for those portions of the overall design exported to another client. Signals that
span multiple simulator boundaries can be debugged in the environment of any affected client.

3.5.2.5 Injecting a Stimulus (Driving a Mixed Net)

A client can use its native signal stimulus facility (or external command files) to inject (drive) a
stimulus value onto any net in its own design partition hierarchy. This includes nets that have ac-
cess to mixed nets and therefore could get propagated into another client’s design partition. In
order for an injected stimulus to drive an associated mixed net, the injected stimulus must follow
the signal design flow (directionality) of the associated mixed net.

3.5.2.5.1 Sample Signal Injection

A sample signal injection is as follows. In the design shown in Figure 3-14, the entire design is
simulated in client_1, except for cell B and its sub-hierarchy which is simulated in client_2. The sig-
nals crossing the boundary are DATA (bi-directional), CONTROL (input to cell B, in client_2) and
DATA_RDY (output from client_2). In this design, you can drive the DATA signal from either en-
vironment because it is bidirectional. However, the CONTROL signal can only be driven from the
client_1 environment, and the DATA_RDY signal can only be driven from the client_2 environ-
ment. If you drive the CONTROL signal from the client_2 environment, the changes will be seen
in the client_2 environment but will not be propagated into the client_1 environment. Similarly,
any stimulus on the DATA_RDY signal in the client_I environment will not be propagated to cell
B in the client_2 environment.

{module TOP)
( (cell B)
(cell A) (simmatrix=client_2)
(cell C) (cell D) I DATA
CONTROL
, DATA_RDY

Figure 3-14. Diagram of Two Blocks with Stimulus

Version 1.7 - July, 1997 3-19



Theory of Operation SimMatrix User’s Manual

This situation can be circumvented by changing CONTROL and DATA_RDY into bidirectional
signals. This can be done by adding the add_mixed_net command into the design. init file as
follows:

add mixed_net -dir inout CONTROL

add_mixed_net -dir inout DATA_RDY
These changes take effect after re-partitioning the design. This changes the direction of the CON-
TROL and DATA_RDY signals from unidirectional to bidirectional. Note that there is a small per-

formance penalty associated with changing a unidirectional signal into a bidirectional signal since
events must now propagate into both directions.

3.5.3 Terminating a Co-simulation Session

A co-simulation session can be terminated by shutting down SimMatrix or any of the client sim-
ulators. When SimMatrix recognizes that any of the simulators involved in the co-simulation ses-
sion has terminated, it instructs all other simulators to terminate the session in an orderly manner.

3-20

Version 1.7 - July, 1997

o vhw Cp B T, L & €. L

ol ol

fe B G E 4 B K

G S R GO O I G G

G



