
EMC® Documentum®

xCelerated Composition Platform
Version 1.0

Performance Tuning Guide

EMC Corporation
Corporate Headquarters:

Hopkinton, MA 01748-9103
1-508-435-1000
www.EMC.com

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change
without notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind
with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness
for a particular purpose. Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. All other trademarks
used herein are the property of their respective owners.
© Copyright 2010 EMC Corporation. All rights reserved.

Performance tuning disclaimer: The information in this guide represents best practices for
performance tuning. Your performance tuning efforts are NOT SUPPORTED BY THE WW SUPPORT
ORGANIZATION. For assistance with performance testing, tuning, and troubleshooting, one can call
EMC Professional Services.

Table of Contents

Preface ... 9

Chapter 1 Overview ... 11
Software development lifecycle ... 11
Using iterative development.. 12

General guidelines.. 13
Tuning the software first ... 13
Balancing system load... 13
Addressing bottlenecks ... 14

Avoiding resource sharing .. 14

Chapter 2 Planning Capacity and Sizing .. 15
Planning for peak or average loads .. 15
Planning for workflow database tables... 17
Characterizing content .. 17
Capacity planning worksheet .. 18
Sizing the system.. 22

Chapter 3 Maximizing Process Throughput ... 25
Understanding workflow throughput .. 25
Assessing activity creation rate .. 26
Minimizing and consolidating activities ... 27

Assessing activity completion rate ... 27
Understanding activity completion .. 27
Increasing workflow threads and adding Content Servers 28
Maximizing throughput across all workflow instances 28
Increasing workflow threads on the TaskSpace Content Server 29
Dedicating a Content Server to TaskSpace .. 29

Configuring the workflow agent (polling) .. 29
Increasing throughput for single or low volume workflows............................. 30
Increasing polling intervals for multiple Content Servers 31
Configuring the polling interval .. 31
Configuring for on-demand processing.. 31

Avoiding manual bottlenecks .. 32
Sample workflow agent configurations .. 32

Chapter 4 Designing the Application ... 35
General design guidelines ... 35
Preventing high load user actions .. 36
Improving login speed.. 36
Maximizing query yield .. 36

EMC Documentum xCP 1.0 Performance Tuning Guide 3

Table of Contents

Designing the process object model (using structured datatypes)......................... 37
Creating composite indexes... 38
Minimizing fetch operations.. 39
Hiding unused variables ... 39

Converting simple process variables to SDTs .. 40
Minimizing form size.. 40
Designing search forms... 42
Using searchable attributes ... 42
Using search criteria ... 43
Using search restrictions ... 45
Using advanced searches .. 45
Restricting advanced search results.. 46

Designing task lists (work queues)... 47
Designing skill-set matching ... 48

Rendering task lists .. 49
Filtering a task list and partitioning a work queue .. 49
Troubleshooting the get next task function ... 49
Constraining query results for large result sets ... 49
Avoiding unnecessary preconditions ... 50
Changing the default date attribute for sorting a task list................................. 51

Using task history (audit trail) ... 51
Embedding documents (document viewing) .. 51
Using adaptors ... 52
Designing adaptors... 52

Managing group memberships .. 53
Working around the 250 group threshold ... 53

Chapter 5 Designing Reports ... 55
Understanding BAM reporting.. 55
Planning and testing ... 57
Reporting on intra-activity events .. 57
Synchronizing the BAM database .. 57
Using the gap filler ... 58
Configuring data transfer latency .. 58
Increasing the BAM server step size ... 59
Understanding server clock synchronization .. 59
Updating business data (SDTs and package objects).. 60

Designing high performance reports .. 60
Defining report entities and filters ... 60
Modifying the number of records returned in a results set............................... 61
Working across large data sets ... 61
Using aggregation .. 61
Aggregating high volume data tables... 61

Refreshing the dashboard.. 62

Chapter 6 Configuring System Components ... 63
Configuring the TaskSpace application... 63
Disabling drag and drop ... 63
Disabling data-grid resizing .. 63
Increasing cache time.. 64
Turning off Java annotations.. 66

Turning on page serving ... 66

4 EMC Documentum xCP 1.0 Performance Tuning Guide

Table of Contents

Configuring the BAM application server .. 67
Configuring Content Server... 67
Turning off debugging .. 67
Disabling email notifications ... 68

Configuring the BAM database.. 68

Chapter 7 Measuring Performance .. 69
Measuring latency and throughput.. 69
Troubleshooting high latency .. 70

Measuring single user performance ... 71
Determining RPC call source ... 73
Analyzing large queries .. 75
Analyzing process variable usage (measuring fetches) 75
Analyzing query results processing ... 76
Analyzing many small RPC calls ... 77
Measuring adaptor performance.. 78
Checking ACS operation ... 79

Running multi-user (load) tests ... 80
Analyzing multi-user tests .. 83
Avoiding multi-user test worst practices .. 83
Assessing database bottlenecks and dead waits .. 84
Assessing capacity bottlenecks .. 84
Assessing dead waits .. 84

Chapter 8 Maintaining the Repository and BAM Databases .. 85
Maintaining the repository database .. 85
Maintaining the BAM database ... 86
Indexing the database ... 86
Purging and archiving the database ... 87
Applying retention policies ... 87
Purging the entire database ... 87
Purging selective portions of the database .. 87

Chapter 9 Troubleshooting .. 89

EMC Documentum xCP 1.0 Performance Tuning Guide 5

Table of Contents

List of Figures

Figure 1. Performance tuning software development lifecycle.. 11
Figure 2. Iterative performance improvement... 12
Figure 3. Peak versus average loads ... 16
Figure 4. Average must be within capacity ... 16
Figure 5. Cycle time versus throughput ... 17
Figure 6. Workflow throughput ... 26
Figure 7. Simple workflow .. 29
Figure 8. Single workflow ... 30
Figure 9. Potential manual bottlenecks ... 32
Figure 10. Query yield .. 37
Figure 11. Separate data tables for different process variable types .. 38
Figure 12. Single table representation for an SDT.. 38
Figure 13. Hiding a process variable .. 40
Figure 14. Sample form... 41
Figure 15. Mapping object type attributes to columns in which search results are

displayed ... 43
Figure 16. Specifying search criteria .. 44
Figure 17. Configuring search restrictions .. 45
Figure 18. Interface for manually defining search queries.. 46
Figure 19. Processing for unselective and selective work queues.. 48
Figure 20. Setting group limits .. 54
Figure 21. BAM architecture ... 56
Figure 22. Seconds saved by disabling drag and drop, and data grid resizing........................... 64
Figure 23. Caching impact for number of requests .. 65
Figure 24. Caching impact for size of request ... 65
Figure 25. Caching impact for response time .. 66
Figure 26. Document viewing with ACS page serving .. 67
Figure 27. Single request executing three serial disk I/Os .. 71
Figure 28. Large query trace.. 75
Figure 29. Result set sizes and service times ... 77
Figure 30. Histogram for many small queries ... 78
Figure 31. Verifying the ACS URL and port ... 79
Figure 32. ACS image properties in Daeja .. 80
Figure 33. Sample Load Runner testing scripts for Webtop.. 81
Figure 34. Ramping up number of users .. 82

6 EMC Documentum xCP 1.0 Performance Tuning Guide

Table of Contents

List of Tables

Table 1. Capacity planning worksheet .. 18
Table 2. Search criteria conditions .. 44

EMC Documentum xCP 1.0 Performance Tuning Guide 7

Table of Contents

8 EMC Documentum xCP 1.0 Performance Tuning Guide

Preface

This document addresses areas known to affect performance in xCelerated Composition Platform
(xCP) solutions. The guidelines can be used during the development and testing of new xCP solutions
or to troubleshoot performance problems with production xCP solutions.

The main body of the document is organized around the main areas impacting performance. Many of
the individual topics, however, were derived as solutions to the most common performance problems
know to occur in production systems. These known problems are listed in the troubleshooting
chapter and include links to the topics that address the problem area.

While system sizing has a significant impact on the performance of your tuned solution, it is only
addressed in summary fashion here.

Intended Audience
This document provides the lowest level of aggregated technical detail available on the subject of xCP
performance tuning to date. Designers of xCP solutions comprise the primary target audience for this
document, though others can have an interest in its contents as well.

Revision History
The following changes have been made to this document.

Revision Date Description

April 2010 Initial publication

EMC Documentum xCP 1.0 Performance Tuning Guide 9

Preface

10 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 1
Overview

Creating the best performing xCelerated Composition Platform (xCP) systems to address your
business requirements involves; 1) designing and configuring the software to maximize throughput
and minimize response time, and 2) sizing your hardware components. This document focuses on
designing and configuring the software. Chapter 2, Planning Capacity and Sizing provides summary
information on capacity planning and system sizing. The following chapters provide detailed
information on designing and configuring high performing xCP systems:

• Chapter 3, Maximizing Process Throughput

• Chapter 4, Designing the Application

• Chapter 5, Designing Reports

• Chapter 6, Configuring System Components

• Chapter 7, Measuring Performance

• Chapter 8, Maintaining the Repository and BAM Databases

• Chapter 9, Troubleshooting

Software development lifecycle
Figure 1, page 11 illustrates a typical Software Development Life Cycle (SDLC). Performance tuning
opportunities exist at every stage of the development process.

Figure 1. Performance tuning software development lifecycle

Business case — Expectation setting and volume metrics characterize the business case phase. Make
sure that realistic system expectations are defined up front. For example, it is unrealistic to expect
being able to fetch 5 TB digital movie master file in 2 minutes. Carefully define current and future
business transaction volumes as they have a significant impact on capacity planning.

EMC Documentum xCP 1.0 Performance Tuning Guide 11

Overview

Requirements — During the requirements phase, focus on defining the business requirements, not
the implementation details or functional requirements. For example, collecting tax is a business
requirement while having a tax lookup table is a functional requirement. Define the workload
partitioning scheme in accordance with business process requirements. For example, tax returns
are filed and processed in different locations depending on where you live. Remove requirements
that inhibit scalability, including case insensitive partial keyword search, excess search fields, large
search result sets, and so on.

Design — Most transactional systems are characterized as read-only (90% of transactions are
read-only). Exceptions to this rule include report generating systems, like billing statements, which
are mostly write systems. Most systems have a few business transactions that dominate system load.
Design the system to optimize performance for high load transactions. Exceptions to this rule include
infrequently run business transactions, like a once-a-year audit committee report that determines
business funding. Analyze your queries for scalability inhibitors.

Build — Instrument logging so it can be turned on or off. Assess query results and consolidate
multiple fetches (multiple queries) into single queries.

Test — Assess performance for single user tests and system under load. Use scripted business
transactions for single user testing. For load testing, turn off detailed tracing, use reasonable click
pacing, and use the same scripted business transactions as used for single user testing.

Implementation — Monitor coarse system utilization metrics (CPU, memory, disk I/O) correlated
with content, users, and business transaction volume. Maintain the databases.

Using iterative development

Create your xCP application in a series of phases. Break up the full application into modules and
establish frequent cycles of design, implementation, and testing (Figure 2, page 12). For xCP
applications, the iterative approach is more successful than the classic waterfall approach.

Figure 2. Iterative performance improvement

Thorough planning and testing is important for process-based applications and can make a difference
in whether a project succeeds or fails. xCP provides templates for fast prototyping and testing of
processes, forms, reports, and user interfaces. Anticipating risks, aligning on requirements, and
designing the solution carefully are critical to success.

12 EMC Documentum xCP 1.0 Performance Tuning Guide

Overview

General guidelines
Pay close attention to the following general performance guidelines:
• Tune the software before completing your sizing requirements (Tuning the software first, page 13).

• Design your application to enable users to complete their jobs with a minimum number of
actions and choices.

• Audit, monitor, and report on necessary information only.

• Partition the workload for balance and avoid bottlenecks (Balancing system load, page 13).

• Minimize the number of discrete object types through use of structured datatypes and avoid
excessive subtyping in your object model (Designing the process object model (using structured
datatypes), page 37).

• Tune your queries for the highest yield (Maximizing query yield, page 36).

• Maintain your databases (Chapter 8, Maintaining the Repository and BAM Databases).

• Avoid sharing resources with other applications (Avoiding resource sharing, page 14).

Tuning the software first

Use the guidelines provided in this document to tune and configure the software first, before
completing your hardware requirements assessment. After tuning the software, simulate the
activities and load of your anticipated production environment to assess hardware resource needs.

In most cases, do not compensate for software design issues by adding hardware resources. Not only
do hardware resources cost more, but resource requirements stemming from poor software design
and maintenance practices can gradually erode and overwhelm hardware capacity.

Balancing system load

Load balanced systems provide the best overall performance. A large part of system load balancing
involves finding the right balance of software components to handle system activities. After
determining the correct balance of software components in a simulated environment, you can more
easily determine the most appropriate deployment of those software components to the same or
different hosts (physical or virtual) in a production environment.

Use an iterative methodology to determine the combination of software components that result in
the most balanced loads. Run the software with loads that simulate the anticipated production
environment and measure activities between the key software components where bottlenecks
can occur. When bottlenecks occur, try to reconfigure or change your design first, before adding
additional servers or hosts. Add more hosts only after you have exhausted all software options.

Note: Adding more hosts before you tune the software only masks problems in your design. In some
cases, no amount of additional hosts solves a software or implementation design issue.

Virtual machines provide a convenient way to simulate the effect of adding additional hosts to an
environment. Virtual machines can be set up and torn down easily and they can be configured with

EMC Documentum xCP 1.0 Performance Tuning Guide 13

Overview

their own dedicated resources. You can also use tools, like Shunra, to simulate network latency
between different host machine locations in your production environment. Virtual machines do not
simulate the capacity of physical hardware exactly, but they can be used to gauge the effect of adding
hosts of different types. As such, they can help you decide on the number and type of physical hosts
to handle the throughput requirements of your business.

Addressing bottlenecks

Focus your load balancing strategy on system areas prone to bottlenecks. Devising good
measurements of throughput for these areas helps you iteratively change aspects of your software
design and assess the impact on throughput. After tuning the software, you can add hosts (virtual or
physical) to bottleneck areas that cannot be designed away. Key process areas prone to bottlenecks
include the following:
• automatic and manual activity creation

• manual and automatic activity completion

• work queue and audit trail management in the repository database

• system query performance.

Avoiding resource sharing

When possible, provide dedicated hardware resources for xCP system components. System
performance fluctuates when one or more tiers in the system share resources with other applications.

Partitioning of xCP resources opens the possibility of resources not being available to xCP when
needed. This effect also occurs when running virtualized images on a large host machine. Bottlenecks
that occur due to disk I/O can be hard to diagnose. CPU and memory utilization do not indicate
which application or image generates the I/O.

Minimize the use of multiple schemas on your database host and do not use the same database
instance for your repository and for BAM.

Dedicate each JVM or application server cluster to a single application, such as TaskSpace. Dedicated
JVMs enable applications to scale and perform better, as well as making them easier to troubleshoot.

14 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 2
Planning Capacity and Sizing

This chapter provides the following capacity and sizing related sections:
• Planning for peak or average loads, page 15

• Planning for workflow database tables, page 17

• Characterizing content, page 17

• Capacity planning worksheet, page 18

• Sizing the system, page 22

The relationship between content (number of documents and average content size), flow (content
ingested per time period), retention policies (content disposition rates), and growth projections affect
your capacity planning. Plan your capacity to accommodate future content and flow. A small system
comprised of a repository with 10 million objects and 2 million activities per day can grow to a large
repository with 10 billion objects and 20 million activities per day.

Plan your capacity to account for content disposition rates and auditability. Solutions that grow to
1 million documents by ingesting 100,000 documents per year for ten years has a different impact
from solutions that ingest and dispose of 1 million documents per day. Solutions that retain an audit
trail for a long time have a significant impact, even if the daily workflow volume is small. After ten
years, a solution which averages only 50 workflows per day can generate an audit trail database
table with 100 million rows.

Planning for peak or average loads
Systems with high transaction volume or large usage (100,000 activities per hour, for example) can
exhibit variable performance during certain time periods. Sizing the system for average rather than
peak loads can result in degraded performance during peak load periods. For mission critical
applications where downtime or performance degradation is unacceptable, size the system for peak
loads.

Gather all use case scenarios during the requirements phase. If there are periods when workloads
spike (Figure 3, page 16), make sure to identify and use these volume metrics when sizing your
system. When load testing, include single user, average-load, and peak-load scenarios.

EMC Documentum xCP 1.0 Performance Tuning Guide 15

Planning Capacity and Sizing

Figure 3. Peak versus average loads

Lack of capacity to handle peak loads does not matter if you can defer the processing of peak periods
over a longer period when volumes are less than available capacity. However, process deferral
can increase cycle time and violate your SLA.

Size your capacity (maximum available throughput) to handle peak loads within specified SLA. If
your SLAs are relaxed enough to be able to defer processing of peak loads, you can size capacity to a
demand curve that fits or exceeds the average load (Figure 4, page 16).

Figure 4. Average must be within capacity

If your average demand exceeds your available capacity, you cannot defer processing to another
time period. Capacity that is less than average demand leads to a system that can never catch up
with the backlog.

16 EMC Documentum xCP 1.0 Performance Tuning Guide

Planning Capacity and Sizing

Planning for workflow database tables
Workflow cycle times and the number of activities per workflow impacts sizing of supporting
workflow database tables (dmi_workitem, dm_queue_item, dmi_package, dmc_wfsd_*). Figure 5,
page 17 illustrates the difference between a system with 100K workflows, each with 10 activities and
a cycle time of 1 day, and a system with same number of workflows but with 100 activities per
workflow and cycle times of 365 days. The system with cycle times of 1 day generates no more than 1
million rows in the workflow supporting tables (dmi_workitem, for example) whereas the system
with cycle times of 365 days generates more than 3.6 billion rows in the workflow supporting tables.
When sizing your supporting workflow database tables, consider not only the number of workflows
and activities, but the cycle times as well.

Figure 5. Cycle time versus throughput

Characterizing content
The relationship between content and capacity planning differs depending on whether content is
taken to mean the number of documents or size of the documents. For example, two clients can
both have a 500 TB of content. In one case, 10 billion emails (50 KB each) comprise the content
whereas in another case 100 master files (5 TB movie productions in high definition format) comprise
the content. In the former, the potential flow of repository objects and process activities related to
the 500 TB of content is much greater.

EMC Documentum xCP 1.0 Performance Tuning Guide 17

Planning Capacity and Sizing

Capacity planning worksheet
Use the information in Table 1, page 18 to help with your capacity planning.

Table 1. Capacity planning worksheet

Load
source

Question Reason Sample answer

How long are
documents retained
after workflow
completion?

Document retention
requirements
determine disposition
rates and impact future
capacity requirements.

We keep all documents for at least
33 months. 20% of documents are
held permanently.

Content What are the average,
peak, and bucket
cycle times for your
workflows?

Workflow cycle times
determine which cases
are hot and which are
cold, and allow for
case tiering and SLA
adjustments.

95% of all cases complete in less
than 5 day. 99% of all cases
complete in less than 3 month.

18 EMC Documentum xCP 1.0 Performance Tuning Guide

Planning Capacity and Sizing

Load
source

Question Reason Sample answer

What are your peak
and average daily
document ingestion
rates?

An influx of
documents can cause
an SLA exception
unless the system
is sized for peak
ingestion.

At 5 year horizon, we project
ingestion of 345,000 documents per
day. This may peak to 1,000,000
documents per day during a single
day in a year.

What are your peak
and average workflow
starts per day?

An influx of workflows
can cause an SLA
exception unless the
system is sized for
peak workflow starts.

At 5 year horizon, we project
starting 191,000 workflows per day.
This can peak to 382,000 workflows
per day during a single day.

What are your peak
and average number of
documents attached to
a workflow?

Document volume
affects storage capacity
requirements and
determines size of
the tables that track
attachments.

At 5 year horizon, we project
an average of 2 documents per
workflow. This can peak to 5
documents per workflows during a
single day in a year.

How many peak
and average audit
trails do you have
per document and
workflows?

Audit trails determine
how many rows are
in the tables that track
events.

We think we have average of 10
comments per document and 2
comments per workflow. Some of
the very difficult cases have 100
comments per document and 20
comments per workflow.

Flow

What is the average
number of document
views you have per
document during
workflow processing
and over the document
lifetime?

Document views
determine the
retrieval rate and
probability of retrieval
after case closure.
Document views can
affect your tiered
storage approach and
demand for network
bandwidth.

We have 3 document views
per document during workflow
processing. There is total of 3.1
document views over document
lifetime.

EMC Documentum xCP 1.0 Performance Tuning Guide 19

Planning Capacity and Sizing

Load
source

Question Reason Sample answer

What is the
peak number of
concurrently logged
in users during a busy
hour?

Feeds directly into the
sizing spreadsheet.

There are 2500 concurrently logged
in during peak busy hour.

What is the average
number of business
transactions per user
during a busy hour?

Used to adjust the
workload modeled in
the sizing spreadsheet.

There are 10 business transactions
per user during a busy hour.

What is the average
business transaction
duration per second
during a busy hour?

Used to calculate the
percentage of active
users.

During a busy hour, the average
transaction lasts 60 seconds and
there are 10 transactions. The
percentage of time users are active
is:10*60/3600=16% active

User

What is the average
number of hours a
worker works in a time
period?

Determines available
worker capacity to
process cases, based
on average case
processing time.

On average, a worker works 7.5
hours per day, 260 days in a year.
If one case takes 15 minutes, one
worker can process 4 cases per
hour and 7,800 cases per year
(4*7.5*260=7,800). 2,500 users can
process 19.5 million cases per year.

What are the peak and
average number of
business transactions
(cases, requests, and so
on) per time period?

Determines the size of
the workflow activity
tables.

We process 10,000 cases per month,
but occasionally we get a seasonal
influx of 100,000 cases per month.

Workload
What are the peak and
average cycle time of
business transactions
(cases, requests, and so
on)?

Determines the size
of workflow activity
tables.

Average is 5 days but some cases
can stay open as long as 90 days.

20 EMC Documentum xCP 1.0 Performance Tuning Guide

Planning Capacity and Sizing

Load
source

Question Reason Sample answer

Search

What are the top three
or four search patterns
on the system?

Helps you decide
how to create targeted
search forms, with
fewer fields, so that the
supporting database is
indexable.*

• For person search, three search
fields are required. They
are social security number
(required), date of service
(required), and document type
(optional).

• For company search, three search
fields are required. They are
plan number (required), date of
service (required), and process
area (optional).

• For medical search, three search
fields are required. They are
provider number (required),
date of service (required), and
patient ID (optional).

• For case search, two search fields
are required. They are case
number (required) and date of
service.

Search

What is the
distribution of the
time periods for the
search in terms of
number of searches?

For large volume
systems, this provides
a DBA with an idea of
which data is hot and
which is cold, which
helps with database
design partitioning.

• 60% of searches are against
documents over past 1 month.

• 25% of searches are against
documents over past 3 months.

• 7% of searches are against
documents over past 12 months.

• 2% of searches are against
documents over past 24 months.

• 1% of searches are against
documents over past 36 months.

EMC Documentum xCP 1.0 Performance Tuning Guide 21

Planning Capacity and Sizing

Load
source

Question Reason Sample answer

Search

What are the top three
or four highest yield
workload profile use
cases that cover 80% of
business transactions?

Provides capacity
sizing information
such as activities per
second based on the
underlying workflow
template design.

• 40% of the time – straight
through processing. Case
processor reviews inbox artifacts
and terminates case.

• 20%of the time – straight through
processing with research. Case
processor reviews inbox
artifacts, searches for previously
submitted documents, and
terminates case.

• 10% of the time – expert review.
Case processor reviews inbox
artifacts and routes case to expert
for review and disposition.
Expert uses straight through
processing to terminate case.

• 10% of the time –medical review.
Case processor reviews inbox
artifacts and routes to medical
processor for further review.
Medical reviewer determines
disposition of case and forwards
back to case processor. Case
processor terminates case.

* No database can handle the number of indexes required to search with any combination of the 7
fields under a reasonable volume with reasonable response SLAs. This kind of "search pattern"
classification allows proper database indexing that can scale to billions of records with proper
database sizing, configuration, and maintenance.

Sizing the system
Process-based applications with high volumes of activities have special sizing requirements in a
production environment. Large process volumes can also raise issues of high availability and disaster
recovery, which require more complex and robust hardware requirements.

Use the System Sizing Spreadsheet - EMC Documentum 6.5 (available on Powerlink) and BAM
Dashboard Sizing Calculator (available in the BAM Database Sizing Calculator folder of the
bam-product-supplemental_files.zip file) as a starting point to estimate hardware requirements.
Before using either of these sizing tools, identify and model all parameters affecting sizing that are
identified in the capacity planning worksheet (Capacity planning worksheet, page 18).

The EMC Documentum System Planning Guide provides information on system topologies (distributed
environments, high availability, and so on), which can also affect performance.

22 EMC Documentum xCP 1.0 Performance Tuning Guide

Planning Capacity and Sizing

Begin system sizing during the design phase, since volumetric considerations influence the system
design. For example, some high yield process transactions like the task list must be performed
frequently. The task list transaction can perform well in a test environment, but can result in
performance problems when many users simultaneously execute the transaction. Each transaction
queries the database that must return results in under one second. If the browser is unable to render
screens in a timely fashion, aggregate demand on the database adversely affects user performance.
If there are not enough resources to accommodate thousands of simultaneous users querying the
database, performance degrades.

EMC Documentum xCP 1.0 Performance Tuning Guide 23

Planning Capacity and Sizing

24 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 3
Maximizing Process Throughput

This chapter contains information on the following topics:

• Understanding workflow throughput, page 25

• Assessing activity creation rate, page 26

• Assessing activity completion rate, page 27

• Understanding activity completion, page 27

• Increasing workflow threads and adding Content Servers, page 28

• Configuring the workflow agent (polling), page 29

• Avoiding manual bottlenecks, page 32

• Sample workflow agent configurations, page 32

Understanding workflow throughput
Process Builder defines the automatic and manual activities comprising your business process. The
frequency with which these activities complete determines your overall throughput. The following
items impact process activity throughput:
• process activity creation rate

• database capacity

• number of Content Servers (workflow agents) processing activities in a work queue

• number of workflow threads for each Content Server

• TaskSpace performance

• process activity completion rate.

When a workflow instance creates an activity, the Content Server workflow engine adds a work item
to a workflow queue in the database (Figure 6, page 26). Each Content Server in the system writes
to the same workflow queue. The workflow agent for each Content Server then queries (polls) the
database for work assignments from the common queue and adds the work items to workflow
threads for the Java Method Server (JMS) to process. Drawing work assignments from the common
workflow queue balances activity completion load across all workflow agents and Content Servers in
the system, even though some Content Servers generate more activities than others. Understanding
activity completion, page 27 provides details related to workflow agent processing.

EMC Documentum xCP 1.0 Performance Tuning Guide 25

Maximizing Process Throughput

Figure 6. Workflow throughput

Independent factors determine a systems capacity for generating activities and completing activities.
The activities defined for all active workflow instances across all Content Servers determine the
activity generation rate. The number of workflow threads available across all Content Servers
provides a good indication of activity completion capacity.

In fully load-balanced systems, activity creation rates approximate activity completion rates. When
activity creation rates exceed activity completion rates, the database work queue swells, which affects
database performance. When the activity completion rate exceeds activity creation rate, system
resources for activity completion become under utilized. Variations in the rate of activity creation
cause peak load demands for activity completion.

Design your processes in accordance with your business requirements, then scale the Content Server
tier to keep up with the activity creation rate during peak load periods (Planning for peak or average
loads, page 15). If you are constrained in your ability to scale the system, you can also regulate the rate
of activity creation (in your process design) so that it does not exceed activity completion capacity.

Assessing activity completion rate, page 27 provides information on the activity processing rate of a
single workflow thread. Assessing activity creation rate, page 26 provides information on modeling
the activity creation rate for all your processes over time.

To improve system capacity to complete activities, use more workflow threads per Content Server
and add more Content Servers (Increasing workflow threads and adding Content Servers, page 28).

Be explicit about your response time and throughput requirements.

Assessing activity creation rate
Business requirements define the activity creation rates for the system.

26 EMC Documentum xCP 1.0 Performance Tuning Guide

Maximizing Process Throughput

Minimizing and consolidating activities

System throughput varies between 3-100 activities per second, depending on system configuration
and hardware. Workflows with more activities take longer to complete.

The largest performance impact for processing activities results from opening up a new Content
Server session. As a result, the biggest performance improvement comes from minimizing the
number of discrete activities in a workflow. Minimize the number of workflow activities by, 1)
eliminating unnecessary activities altogether or 2) consolidating the steps performed by multiple
activities, into a single condensed activity.

To improve the completion rate of individual activities, do the following:
• Use the bpm_noop template wherever possible. This particular noop does not create an additional
template and does not send an HTTP post to the JMS.

• Within the automatic activity, do the work on behalf of a superuser instead of a regular user.

• Turn off auditing whenever unnecessary.

Assessing activity completion rate
A single workflow thread can process up to five activities per second (using the bpm_noop activity
template), which works out to be 300 per minute and 18,000 per hour (depending on the specific
activity and method being called).

Understanding activity completion
Each Content Server provides one workflow agent to process workflow activities and one Java
Method Server (or Docbasic Method Server) to support up to 25 (nominally 15) workflow threads.

The workflow agent polls the workflow queue for available activities (activities where the
a_wq_name attribute of the activity has not yet been marked for processing). The workflow agent
acquires available tasks from the queue and updates the a_wq_name attribute of the activity to mark
the activity for processing.

The workflow agent acquires 30 activities (if there are 30 activities in the queue) for every workflow
thread. For example, if Content Server provides three workflow threads, the workflow agent picks
up 30*3=90 activities. The workflow agent provides the 30 acquired activities to each workflow
thread for processing.

The workflow thread posts activities for processing by making an HTTP post to the Java Method
Server or by issuing instructions to the Docbasic Method Server.

The workflow agent does not poll for additional activities if the number of activities assigned to the
threads is more than five times the number of threads (5*n, where n is the number of threads). When
the workflow thread task count drops below 5*n, the workflow agent queries the workflow queue
and repeats the process for additional available activities. If there are no available activities the
workflow agent sleeps for a period defined by the polling interval. This sleep interval is defined in
dm_server_config and is called wf_sleep_interval.

EMC Documentum xCP 1.0 Performance Tuning Guide 27

Maximizing Process Throughput

Increasing workflow threads and adding
Content Servers
Adding workflow threads increases system capacity to complete activities. Adding workflow threads
also creates additional demand on the database and Content Server resources, which can affect
TaskSpace performance or the performance of any other application using the same infrastructure
(Increasing workflow threads on the TaskSpace Content Server, page 29).

Iteratively modify the number of system workflow threads to assess the impact on user response
time, activity throughput, and system resource consumption. More workflow threads result in
greater automatic activity throughput up to the point where system resource consumption degrades
performance. Scale up slowly to understand when resource limitations begin to show (Content Server
CPU and database CPU utilization). The following provides some guidelines:
• A single CPU Content Server host cannot process 10,000 activities per hour, regardless of how
it is configured.

• Be cautious if CPU or memory utilization exceeds 80% for any tier in the system.

• Do not configure more than three threads per CPU core.

If throughput requirements exceed the capacity that a single Content Server can provide, add more
Content Servers. Each Content Server instance (and associated workflow agent) nominally supports
15 concurrent workflow threads. Deploy one Content Server instance for every multiple of 15
concurrent workflow threads required by your solution. Avoid more than 25 workflow threads for
any Content Server.

Note: If your throughput requirements exceed the capacity of the database, adding additional
Content Servers does not help. To determine the capacity of your database, monitor your database
CPU. If there is no idle CPU, your database hardware is probably undersized.

When adding Content Servers, balance the load of concurrent workflow threads across each new
Content Server and initially configure each new Content Server with fewer than the nominal
maximum number of concurrent workflow threads (15). For example, if you have 15 workflow
threads on one Content Server and you introduce another Content Server with the same configuration,
lower the number of threads to 10 each (20 threads total), then scale up the threads slowly to the
required number.

Each new Content Server includes a workflow agent that can poll the database, which can slow down
the database. Configuring the workflow agent (polling), page 29 provides more information on
polling intervals and on-demand processing.

Maximizing throughput across all workflow instances

The Content Server workflow agent maximizes automated activity throughput by processing
activities, from any active workflow, in the order in which they are written to the work queue (first in,
first out). Sometimes, users do not see manual activities in their inbox until the automatic activities of
many other workflows complete, even though there are only a couple automatic activities preceding
the manual activity on which they act (Figure 7, page 29).

28 EMC Documentum xCP 1.0 Performance Tuning Guide

Maximizing Process Throughput

Figure 7. Simple workflow

Increasing workflow threads on the TaskSpace Content
Server

For systems consisting of multiple Content Servers, dedicate one Content Server to TaskSpace and the
rest to processing activities (Dedicating a Content Server to TaskSpace, page 29). If TaskSpace must
use a Content Server that also processes workflow activities, incrementally add additional workflow
threads while monitoring TaskSpace performance. Use the highest number of workflow threads
where acceptable TaskSpace performance can still to be achieved.

When deciding between adding additional threads or Content Servers, choose additional Content
Servers if the resources are available.

Dedicating a Content Server to TaskSpace

To remove Content Server resource contention between workflow threads and TaskSpace
performance, provide dedicated Content Servers to handle the workflow threads and a different
dedicated Content Server for TaskSpace. To prevent a Content Server from processing automatic
tasks, make the following configuration setting in the Content Server dm_server_config object:
wf_agent_worker_threads=0

Configuring the workflow agent (polling)
The workflow agent can be configured for polling or on-demand processing. When configured for
polling, the workflow agent periodically polls (queries) the database work queue for batches of tasks
(up to 30 per workflow thread) to be processed. When no activities exist in the queue, the workflow
agent ’sleeps’ for a duration of time (seconds) set by the polling interval (the default polling interval is
5 seconds). When the polling interval expires, the workflow agent polls the database.

The workflow agent only sleeps when no activities exist in the queue to process. When activities exist,
the polling interval has no effect because the workflow agent does not sleep.

When configured for on-demand processing (Configuring for on-demand processing, page 31),
Content Server notifies the workflow agent when new activities complete and new work items get
created in the work queue. The workflow agent then queries the database for the new work item and
the workflow agent picks up the new work queue item for processing.

On-demand processing can result in many more queries to the database than when polling for
batches of work items (especially for active work queues), which results in a common database

EMC Documentum xCP 1.0 Performance Tuning Guide 29

Maximizing Process Throughput

performance problem. On-demand processing can also result in an unbalanced load across Content
Severs as each Content Server only processes the automatic tasks its workflows generate. With
polling, all Content Servers can process tasks generated by any of the other Content Servers.

Polling can also provide for load balancing, even if on-demand processing is enabled. For example, a
Content Server that runs out of its own on-demand activities for the duration of the polling interval,
polls the database for tasks in the common queue.

Increasing throughput for single or low volume
workflows

In a single workflow (Figure 8, page 30), processing of a single automatic activity exhausts the
backlog of activities in the workflow queue until the automatic activity can be completed and the
next activity in the workflow enters the workflow queue. During this temporary lull, in which the
queue does not contain any activities for processing, the workflow agent goes into sleep mode for the
duration set by the polling interval.

Figure 8. Single workflow

If a workflow has 6 steps and the polling interval is set to 30 seconds, the workflow accumulates 150
seconds of sleep time before the workflow completes. The following illustrates the sequence of
behaviors.
1. Complete workflow #1, Activity 1

2. Sleep 30 seconds

3. Complete workflow #1, Activity 2

4. Sleep 30 seconds

5. Complete workflow #1, Activity 3

6. Sleep 30 seconds

7. Complete workflow #1, Activity 4

8. Sleep 30 seconds

9. Complete workflow #1, Activity 5

10. Sleep 30 seconds

11. Complete workflow #1, Activity 6

Decreasing the polling interval improves throughput for similar scenarios with single workflows
or low volume workflows.

30 EMC Documentum xCP 1.0 Performance Tuning Guide

Maximizing Process Throughput

Increasing polling intervals for multiple Content Servers

The workflow agent polls the database by issuing two queries to the database each time the polling
interval expires. If your deployment comprises eight Content Servers, eight workflow agents (one for
each Content Server) poll the database. A polling interval of 5 seconds for each of these 8 Content
Servers results in 8 x (60/5) x 2= 192 queries a minute to the database or 11,520 queries per hour. In
contrast, a 5-minute polling interval results in only 96 queries an hour.

To compensate for the increased load on the database that polling from multiple Content Servers
creates, increase the polling intervals for each Content Server incrementally by the amount of the
polling interval for one Content Server. For example, if the polling interval for one Content Server is
15 seconds, set the polling interval for two Content Servers at 30 seconds, three Content Servers at
45 seconds, and so on.

Configure the workflow agent for all (equally sized) Content Servers in a multi-server deployment the
same way, except if one Content Server also services TaskSpace. If one Content Server also services
TaskSpace, configure it differently to ensure sufficient levels of TaskSpace performance.

Configuring the polling interval

The following example uses IAPI to configure the polling interval for 30 seconds:
API> retrieve,c,dm_server_config
API> set,c,l,wf_sleep_interval
SET> 30
API> save,c,l

Note: The repository must be restarted for these configuration changes to take effect.

Configuring for on-demand processing

Content Server can be configured to process automatic workflow activities as soon as they are created.
This configuration provides the lowest latency and is useful for test systems or when there are few
users (low load) and few automatic activities (low throughput). Enable on-demand processing by
setting the following environment variable for your operating system:
DM_NOTIFY_WF_AGENT_AUTO_TASK=T

With on-demand processing, Content Server immediately notifies the workflow agent upon
creation of an automatic activity and does not wait for the polling interval. When using on-demand
processing, set the polling interval high to enable Content Server and workflow agent to complete
their transactions long before expiration of the polling interval. Setting the polling interval to 300
seconds generally provides the best throughput.

Note: Use polling for Content Servers with workflows launched more frequently than every
3 seconds.

EMC Documentum xCP 1.0 Performance Tuning Guide 31

Maximizing Process Throughput

Avoiding manual bottlenecks
Throughput bottlenecks can result from an inability to process automatic or manual activities.
Manual activities slow down throughput the most because they require human performers. Human
performers process work items more slowly and their availability can be unpredictable. Workflows
that designate specific individuals as performers of an activity can become stuck when that individual
becomes unavailable for some reason (sick, vacation, and so on). To prevent manual bottlenecks
resulting from specific individual performers:

• Assign manual activities to groups or queues, not individual users.

• Use timers for completion of manual activities and alert an administrator when a task has not
been completed in the allotted time.

• Use automatic activities wherever possible. Most workflows have a completion rate ratio of
10 automatic activities to 1 manual activity.

• Develop a contingency plan to address a backlog if it does occur. Make sure that you can reassign
tasks to other people, groups, or queues.

Figure 9, page 32 shows a workflow example in which a performer of a manual activity goes on
vacation or there is an influx of workflows and the tasks build up.

Figure 9. Potential manual bottlenecks

When delays in expected workflow completion occur, run the following DQL command:
select distinct name, count(*) from dmi_queue_item group by name

processor_0 10
processor_1 24,000
processor_2 1

The result of this query indicates that processor_1 has 24,000 tasks in their queue before all workflows
involving that performer can be completed. The result indicates that tasks are not being distributed
evenly (load balanced) across all available processors, with processor_1 being the bottleneck.

Sample workflow agent configurations
This following provides sample workflow agent configurations.

On-demand processing — In this configuration, a single user or a few users log in to the system to
demonstrate or verify something. They check their task list, and open and complete tasks. Workflow
agent threads do not degrade end-user performance. The system polls once every 5 minutes. Content
Server notifies the workflow agent upon creation of every automatic activity and the workflow
agent picks up the job for processing.
polling interval=300
Set DM_NOTIFY_WF_AGENT_AUTO_TASK=T
Workflow agent threads =1

32 EMC Documentum xCP 1.0 Performance Tuning Guide

Maximizing Process Throughput

High user load, low automatic task throughput — This configuration optimizes application
response time for end users when a high latency for the next manual task is acceptable. In this
configuration, the workflow agent polls once every 2 minutes and hands the work off to a single
workflow agent.
polling interval=120
Workflow agent threads =1

Low user load, high automatic task throughput — This configuration optimizes throughput at the
expense of response time for TaskSpace users. If the priority is for throughput and degraded response
time for TaskSpace users is not acceptable, consider deploying an additional Content Server.
polling interval=15
Workflow agent threads =15

High user load, high automatic task throughput — This configuration optimizes both throughput
and response time for TaskSpace users.
polling interval=15
Several content servers with Workflow agent threads =15

EMC Documentum xCP 1.0 Performance Tuning Guide 33

Maximizing Process Throughput

34 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 4
Designing the Application

This chapter provides guidelines for improving performance of TaskSpace forms and includes the
following topics:

• General design guidelines, page 35

• Preventing high load user actions, page 36

• Improving login speed, page 36

• Maximizing query yield, page 36

• Designing the process object model (using structured datatypes), page 37

• Converting simple process variables to SDTs, page 40

• Minimizing form size, page 40

• Designing search forms, page 42

• Designing task lists (work queues), page 47

• Rendering task lists, page 49

• Using task history (audit trail), page 51

• Embedding documents (document viewing), page 51

• Using adaptors, page 52

• Managing group memberships, page 53

General design guidelines
As you design your application, keep in mind the following general guidelines:
• Avoid excessive subtyping in your object model. Each layer in your object model involves
additional joins of database tables, which affects performance. Keep the inheritance hierarchy in
your object model as flat as possible.

• Tune your queries for the highest yield, where yield is the number of times a query executes
multiplied by query execution time. In some cases, achieving the highest yield involves
de-normalizing a database table by pulling attributes into one or two physical tables.

• Avoid designing forms with functions that are not likely to be used often. The best performing
applications enable users to complete their jobs with a minimum number of actions and choices.

EMC Documentum xCP 1.0 Performance Tuning Guide 35

Designing the Application

• Only track essential events in the audit trail. Auditing can slow down response times and increase
CPU usage on the Content Server and database.

• Partition the workload and avoid bottlenecks.

Preventing high load user actions
Individuals can engage in certain activities that put excessive demands on the system and affect
overall system performance. For example, a case insensitive partial keyword search across several
types can lock the database until the query can be completed. Running a resource-intensive job or
report can also slow down system performance.

Design your application to prevent high load user scenarios from occurring. During development
and testing, devise scenarios that can slow down system performance and design these scenarios
out of your application.

Improving login speed
The user login operation takes 2-10 seconds to complete. The landing page that opens after a user
logs in affects login time the most. For fast logins, set the landing page to the default page or to
a blank search page.

Note: User preferences for the selected landing page negatively affect the performance improvement.

Maximizing query yield
Focus your query tuning effort on those queries providing the highest yield. The number of times a
query executes multiplied by query execution time determines the yield.

Figure 10, page 37 illustrates the possible yield of two queries. The first (fast) query executes 21 times
and each instance takes 0.3 seconds to execute. The second (slow) query executes one time and takes
1.8 seconds to execute. Because the fast query executes more frequently (21 times) than the slow
query (1 time) a 10% improvement in the fast query execution time reclaims more CPU bandwidth
(0.63 seconds) than a 10% improvement in the slow query execution time (0.18 seconds).

Even though there can be more latitude for improving slow queries, the frequency with which the
query gets executed often results in a larger aggregate impact. A small percentage improvement to
frequently executed fast queries can provide a better yield than a large improvement to infrequently
executed slow queries.

36 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Figure 10. Query yield

Designing the process object model (using
structured datatypes)
Process Builder uses process variables to represent different types of data that flow through your
business process. These process variables are defined by a single attribute of a specific type (string,
Boolean, date, and so on) or by a complex Structured Data Type (SDT) consisting of multiple
attributes, each of a specific type.

Caution: Pay close attention to your object model design as your choices can greatly affect
application performance and are difficult to change once your application is in production.

Note: Using simple (single attribute) process variables instead of SDTs has a pervasive negative affect
on performance across various xCP functions, including search, task listing, and BAM reporting.

EMC Documentum xCP 1.0 Performance Tuning Guide 37

Designing the Application

The database creates a separate table for each object type used, whether it is an SDT containing many
attributes or a simple process variable containing a single attribute. When searching for attributes
in different database tables, the database dynamically joins rows of database tables in order to
retrieve pertinent data. Joining rows of database tables impacts performance. When using SDTs, a
single database table contains the searchable attributes and avoids the performance impact of the
join operation.

Tip: Use SDTs to consolidate sets of attributes to the minimal number of object types on which your
business process discretely operates.

Figure 11, page 38 illustrates how the database models two simple process variables of different types
(string and int), resulting in two different database tables. Any search against these two process
variables employs multiple unions for each simple process variable, which slows down performance.
In addition, the database cannot create a composite index, which would otherwise provide additional
performance improvements (Creating composite indexes, page 38).

Figure 11. Separate data tables for different process variable types

Model the two process variables (branch and loantype) as attributes of a single SDT, in which case
the database stores all metadata in a single database table (Figure 12, page 38). The database table
can then be searched without the performance overhead of creating unions, as in Figure 11, page
38. In addition, you can create a composite index for SDTs, which provides additional database
performance improvements (Creating composite indexes, page 38).

Figure 12. Single table representation for an SDT

Creating composite indexes

xCP provides developers with the ability to create composite indexes for SDT attribute values.
Creating a composite index can improve database performance, especially when performing complex
(conditional) searches against a large database of different attributes in the same SDT.

38 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Note: Composite indexes cannot be created across different types (simple process variables) or across
single value and repeating value attributes in the same type.

Note: Have a database administrator determine which columns of a table to index. Creating too
many indexes can cause update and insert statements to perform poorly.

See EMC Documentum Content Server DQL Reference Manual and EMC Documentum Content Server
Fundamentals for information on using make_index to create a composite index.

Minimizing fetch operations

During operations like opening a task, xCP extracts process variable attribute values and displays
the data on a form. For each process variable whose attribute displays on a form, xCP performs a
fetch operation for the process variable and its parent object. Design forms that require the fewest
number of fetch operations (involve the fewest number of process variables) as each fetch operation
affects performance.

For example, when using simple process variables only, a form with 50 fields performs 100 discrete
fetches. When using a single SDT to provide the 50 fields of information, the form performs only 2
discrete fetches, which results in far better performance.

Note: Forms that perform fewer than 60 fetches open in 2-3 seconds. Reducing the number of fetches
to less than 60 does not result in significant performance improvement.

Note: Content Server 6.6 provides for caching of the parent object after initial fetching. As a result,
the number of fetches (after the initial fetch) reduces by half (1 per process variable rather than 2
per process variable).

Note: Making a process variable invisible does not prevent an object fetch but it does result in a slight
performance improvement (Hiding unused variables, page 39).

Analyzing process variable usage (measuring fetches), page 75 provides information on measuring
the number of object fetches in your application.

Hiding unused variables

Process Builder provides the option to mark process variables as visible for manual activities. Making
a process variable invisible improves performance by reducing processing overhead associated
with the form. If no form fields use a process variable, hide the process variable by deselecting the
checkbox in the process variable definition (Figure 13, page 40).

EMC Documentum xCP 1.0 Performance Tuning Guide 39

Designing the Application

Figure 13. Hiding a process variable

Converting simple process variables to SDTs
If your design makes extensive use of simple process variables and you can use SDTs instead, create
new SDTs with attributes that map to the previously used simple process variables. Replace as many
process variables as possible with SDT attributes. Performance improves even if you consolidate the
simple process variables into several (instead of only one) SDTs. After creating the SDT, delete the
simple process variables for which the SDT provides an attribute.

If your application is already in production and you cannot consolidate simple process variables
into SDTs, hide those simple process variables that do not show up in any forms (Hiding unused
variables, page 39) If there are many process variables that are mandatory on the form because they
are mapped to a field and the application is in production and cannot be changed, create a workflow
template you can use while migrating off the old template.

Chapter 5, Designing Reports provides information on the potential performance impact of updating
the BAM database with an SDT definition.

Minimizing form size
Form size determines form rendering performance more than any other single factor. To maximize
form rendering performance, consider the following:
• Only use packages when necessary.

• Adaptor-based data increases form footprint and affects response time (Using adaptors, page 52).

• Use virtual documents or embedded folders, instead of tabs, to contain the forms or documents
needed for processing.

Form size impacts system sizing. A typical JVM can support anywhere between 40-200 users,
depending on the size of the forms involved in day to day business activities. The larger the forms,
the fewer users the JVM can support.

40 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Figure 14, page 41 provides an example of a large form with the following characteristics:
• 46 packages (3 visible)

• 20 fields mapping

• two embedded folders

• four additional tabs

• 30 adaptors.

Figure 14. Sample form

Figure 14, page 41 represents a form that takes up 10 MB of heap space. In this case, a 1024 MB heap
can only support about 80 users. The following breaks down the form components making up
the 10 MB form size:
• Packages: 43 packages marked as visible add 2 MB per form instance in the JVM. For example, 200
users opening up this form consume 400 MB in the JVM. To minimize this impact, mark only the
packages you need as visible. Set the rest to invisible.

• Forms Template: The DOM object created internally for this type of form composition consumes
roughly 2 MB per instance.

EMC Documentum xCP 1.0 Performance Tuning Guide 41

Designing the Application

• Text Fields: For a form with 100 text fields, the template and layout file sizes are 34 KB and 52 KB,
respectively. During runtime, the corresponding forms processor size is 1 MB.

• Adaptors: Processor requirements spike for forms using adaptors that generate large amounts
of data. One adaptor can generate data that translates into 300 XML nodes. This results in the
form processor generating about 10,000 new objects to represent the read/write, hide/show, and
valid/invalid properties for the XML nodes.

Designing search forms
TaskSpace component templates (created in Forms Builder) define the set of objects, stored in the
repository, that get searched for (queried) in TaskSpace forms. To maximize system performance,
avoid unnecessary functions (querying) in your templates and consolidate your queries so that the
fewest number of queries provide required data for a TaskSpace form. Design your object model to
use SDTs instead of simple process variables (Designing the process object model (using structured
datatypes), page 37). Only use search criteria that is necessary for users to complete their jobs. The
following sections provide specific performance tips related to search-related functions configured
for TaskSpace forms.
• Using searchable attributes, page 42

• Using search criteria, page 43

• Using search restrictions, page 45

• Using advanced searches, page 45

Using searchable attributes

The search template, task list template, folder contents template, and process instance list template
include a screen, like the one shown in Figure 15, page 43 for the search template, to specify attributes
to be searched and the columns in which to display the results of the search.

42 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Figure 15. Mapping object type attributes to columns in which search results are displayed

Each searchable attribute and column in which the search result is displayed adds load to the system.
Design search forms with as few searchable attributes and results columns as possible.

Wherever possible, use single-value attributes instead of repeating value attributes. TaskSpace
combines all single value attributes into a single query, but issues an additional query for each
repeating attribute. Each additional query affects performance.

Include the following attributes in your search form. Mark the attributes invisible unless they must
be visible for business purposes.
• r_lock_owner

• a_content_type

• r_content_size

• r_object_type

• r_object_id

If these attributes are not present in the search query of the form, TaskSpace performs a full fetch of
the object to retrieve the attributes, which affects performance.

Using search criteria

The search template, task list template, folder contents template, and process instance list template
include a screen, like the one shown in Figure 16, page 44 for the search template, to specify search
criteria for each item selected for display in a results column.

EMC Documentum xCP 1.0 Performance Tuning Guide 43

Designing the Application

Figure 16. Specifying search criteria

The condition you select defines the syntax of a corresponding search query built by Forms Builder.
The following table describes available conditions and indicates the resulting syntax for an example
query:

Table 2. Search criteria conditions

Condition Description Example

Equals Returns items that match the specified
value exactly.

object_name = ’$object_name$’

Not equals Returns items that do not match the
specified value exactly.

object_name <> ’$object_name$’

Like Returns items that match a pattern
with a wildcard.

object_nameLIKE ’%$object_name$%’

Not like Returns items that do not match a
pattern with a wildcard.

object_name NOT LIKE
’$object_name$’

Starts with Returns items in which the first part of
the item matches the specified value.

object_name LIKE ’$object_name$%’

Ends with Returns items in which the last part of
the item matches the specified value.

object_name LIKE ’%$object_name$’

Exact searches scale much better than wildcard searches. Wildcard searches involve scanning of
a full-text index or database table which affects performance, especially with larger repositories
containing many objects. Avoid using the Like, Not like, Starts with, and Ends with conditions.

44 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Using search restrictions

The search template includes a screen (Figure 17, page 45) to set restrictions on the results of a search.

Figure 17. Configuring search restrictions

Set the search restrictions appropriately to return results of use only. Failure to specify a restriction
on the number of results can have a significant impact on performance, especially when thousands
of objects match the search criteria.

See Restricting advanced search results, page 46 for information on restricting results for advanced
queries.

Using advanced searches

The search template includes a screen (Figure 18, page 46) to create a search query using DQL. More
information on DQL is available in the Documentum Content Server DQL Reference Manual.

EMC Documentum xCP 1.0 Performance Tuning Guide 45

Designing the Application

Figure 18. Interface for manually defining search queries

Note: Wildcards (SELECT *) are not supported in manual queries.

Follow the same performance-related guidelines in your advanced (manual) queries that are followed
for simple queries, including minimizing the number of attributes searched and setting appropriate
results restrictions.

Restricting advanced search results

Avoid designing search templates that do not restrict result sets. In the following example:
SELECT r_object_id, object_name, commodity_code, commodity_description
FROM e2e_commodity WHERE commodity_code LIKE '%$SEARCH_CODE$%'

the query provides placeholder variable (%$SEARCH_CODE$%) which the end user specifies at run
time. If the query returns 10,000 results, all 10,000 results get returned to the TaskSpace application
server after a single user click. The large number of results can result in poor performance for the
user performing the search and the overall TaskSpace application.

To improve single user and overall TaskSpace performance, restrict query result sets by adding
ENABLE (RETURN_TOP n) to the DQL query.
SELECT r_object_id, object_name, commodity_code, commodity_description
FROM e2e_commodity WHERE commodity_code LIKE '%$SEARCH_CODE$%' ENABLE (RETURN_TOP 501)

The ENABLE (RETURN_TOP 501) restricts the query results to the first 501 rows that match the
search criteria, even though there are many more possible matches.

46 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Note: Adding criteria to your query results in fewer items returned and less performance impact.

Note: Content Server, version 6.6, uses range queries that limit results sets to 100.

Designing task lists (work queues)
In TaskSpace, you create work queues to specify tasks performed by any one of multiple individuals.
The work queues can then be specified as the performer of an activity defined in Process Builder. You
define work queues by specifying the members (individuals, groups, or roles), policies (priorities),
and work assignment matching filters associated with the work queue.

TaskSpace populates task lists of individual users by querying work queue repository objects when
the associated work queue gets invoked as the performer of a process activity. TaskSpace applies
work assignment matching filters to the query results, returned from the repository, to refine the list
of tasks included in a user’s (processor’s) task list.

Avoid creating work queues with large ’unselective’ membership. Unselective work queues return
large result sets to TaskSpace which then undergo row by row processing through work assignment
matching filters before a list of tasks for a user inbox can be updated. With unselective work queue
memberships, row by row processing through TaskSpace filters compounds the performance impact
that results from the database returning a large result set of potential tasks for which a user is
unqualified (left branch of Figure 19, page 48.

Designing work queues with ’selective’ membership results in small result sets returned by the
database, better database performance, and fewer rows for processing through work assignment
matching filters (right branch of Figure 19, page 48). In general, assign work queue members that are
qualified to work on most tasks and the highest priority tasks in the queue. Use the work assignment
matching filters to fine-tune task assignments.

EMC Documentum xCP 1.0 Performance Tuning Guide 47

Designing the Application

Figure 19. Processing for unselective and selective work queues

Designing skill-set matching

When using work queues with skill sets, design the skill set levels to apply evenly across tasks in the
work queue. For example, if there are 2 skill levels defined in the skill set for a work queue with 100
tasks, design the skill levels so they result in approximately 50 tasks being uniformly distributed.
Unbalanced skill set filtering can create bottlenecks and sluggish Get Next Task performance in the
work queues of those individuals with the less discriminatory skill values.

Skill set matching works like a precondition (Avoiding unnecessary preconditions, page 50) in that
TaskSpace sequentially evaluates each row in the task list against user competency. Furthermore, skill
set matching requires evaluation of the entire task list. For large task lists (10,000 items, for example),
evaluating an entire task list can have a significant performance impact.

Establish a baseline performance metric for your form before adding skill sets. Assess the
performance impact of adding skill set matching against the baseline to determine whether the value
offered by skill set processing is worth the performance cost.

48 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Rendering task lists
Poor performance for task list rendering (list of eligible tasks take a long time after user clicks the
tasks tab) can occur because the task list query returns many tasks, additional row by row processing
occurs on task list query results, or both. To maximize performance of task list rendering:
• Design your work queues and skill sets properly (Designing task lists (work queues), page 47.

• Minimize the use of custom preconditions (Avoiding unnecessary preconditions, page 50).

• Consider partitioning large work queues into several smaller work queues (Filtering a task list
and partitioning a work queue, page 49).

• Constrain the query results for large result sets (Constraining query results for large result sets,
page 49).

Note: If a task list includes pseudo attributes (specifically package names), another query is issued to
get the object names of the package documents associated with each task.

To measure task list rendering performance, collect a DFC trace on the TaskSpace application
server for a single user. The DFC trace shows all the queries issued when user clicks the tasks tab.
Analyze the task list query to determine the performance issue with the query (Chapter 7, Measuring
Performance). Hot fixes and future releases (6.6, for example) eliminate some additional queries.

Filtering a task list and partitioning a work queue

System capacity can be exceeded when working with large work queues (approximately 50,000 tasks)
during peak loads. In such cases, partition the work queue into multiple queues that satisfy different
criteria, or design forms that filter displayed tasks by date range (for example: today, last seven days,
and so on). Both these approaches limit the number of results returned to a task list.

Troubleshooting the get next task function

The get next task function can be implemented by clicking the Get Next Task button or by setting a
preference in TaskSpace so that the next task automatically displays after completion of a task.

When the get next task function executes automatically, the get next task stored procedure executes
first, followed by rendering of the task form. Performance issues with the get next task function can
result from problems with the task form, the get next task procedure, or both.

To isolate whether there is a problem with the form, collect a DFC trace while manually clicking on
the task list to open a task, which does not involve the get next task procedure. If rendering the form
manually performs well, focus on the procedure. If the form performs poorly, focus on the form itself.

Constraining query results for large result sets

Poor performance for task list rendering can result when a work queue contains thousands of tasks
and the task list query does not limit (constrain) the number of results returned from the database.

EMC Documentum xCP 1.0 Performance Tuning Guide 49

Designing the Application

For example, if the initial task list page looks for tasks in a queue containing 10,000 tasks, unless the
task list query imposes a limit on the number of results, the database returns all 10,000 results to
Content Server and the application server for task list rendering. The performance impact of this
scenario exposes itself through the following symptoms:
• The initial task list form takes a long time to render when a user clicks the "Tasks" tab in TaskSpace.

• The initial task list displays the tasks, but sorting on a column takes a long time to display the
results.

View the collected DQL query for ENABLE (RETURN_TOP n) hint where n is the number of
fetched rows. Lack of the ENABLE (RETURN_TOP n) hint indicates the following:
• The task list form contains a default sort criteria on a process variable (either primitive or SDT
attribute) and this process variable is not used to filter results (not used in the filter criteria).
Remove the default sort on this process variable from the task list form.

• The task list form displays multiple process variables (either primitive or SDT) and filtering occurs
on a different process variable than sorting. The task list service cannot limit the results from
the database and returns all results to the TaskSpace application server, where the application
server does an in-memory sort. Carefully design the task list form to prevent certain columns
from being sortable.

Avoiding unnecessary preconditions

TaskSpace can be customized using the DocumentumWeb Development Kit (WDK). One of the most
common TaskSpace customizations affecting performance involves the use of preconditions.

TaskSpace forms that list rows of items (Tasklist, Search, and Folder View, for example), evaluate
preconditions on result sets returned from a database query before displaying each row in the list.
The preconditions evaluate attributes of listed objects to enable or disable actions that the user
can perform on an object (edit or view only, for example). While preconditions provide for rich
functionality, they can have a significant impact on performance.

TaskSpace processes all preconditions for each object in a list before displaying information about that
object as a row on a form. As a result, preconditions exact a multiplicative performance impact on
rendering a complete list in a form. For example, if there are 10 items in a list, each with 20 applicable
preconditions, TaskSpace executes 200 preconditions before rendering the list. A task list that takes 10
seconds to render with preconditions can take 3 seconds to render without preconditions.

Establish a baseline performance metric for your form before adding preconditions. Individually
assess the performance impact of each precondition against the baseline to determine whether the
value offered by the precondition is worth the performance cost.

Note: Many preconditions inspect object attributes such as "object type", "content type", "content
size", "lock owner", and so on. If these attributes are not present in the search query of the form,
TaskSpace performs a full fetch of the object to retrieve the attributes, which adds an additional
performance impact.

50 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Changing the default date attribute for sorting a task list

Task list queries that use filtering and sorting against large database tables (many users and work
items) perform poorly. By default, TaskSpace stores the data, against which filtering and sorting
queries get executed, in different database tables. The performance impact can be due to the database
spending resources on evaluating the sort instead of using an index (indexes do not span multiple
tables).

Collect the database execution plan and note the sort query performance against the default queue
item date_sent. If it performs poorly, use Forms Builder to modify the task list form to sort on the
work item creation date, which is in the same data table as the default filter criteria. Validate that this
change makes a substantive improvement by rerunning the database execution plan.

Using task history (audit trail)
Task histories provide a list of actions that were performed on items in a task list before the user
received the task. TaskSpace queries the audit trail database table for task history metadata. The
audit trail database table can often grow to be large. As a result, the queries for task histories can
have a significant performance impact.

The following provides a DQL example used to populate a task history:
select workflow_id from dm_audittrail where event_source = 'workflow' and
event_name = 'dm_wf_invoke_subprocess' and id_5 = '4d99f81680014546'

which is then translated into this SQL:
select all dm_audittrail.workflow_id from dm_audittrail_sp dm_audittrail
where ((dm_audittrail.event_source=N'workflow') and
(dm_audittrail.event_name=N'dm_wf_invoke_subprocess') and
(dm_audittrail.id_5=N'4d99f81680014546'))

The following index was applied to the table in order for the query to perform:
dm_audittrail_s(id_5,event_name,event_source)

The audit trail query could grow to 2 million rows, where it would have a major impact on
performance. As a general guideline:

• Avoid using task histories unless they are essential.

• If you use task histories, maintain the audit trail tables by purging or archiving database table
rows.

• Expand the dm_audittrail database table to a couple million rows to see how it impacts
performance.

Embedding documents (document viewing)
Task forms containing embedded document (for viewing) typically add 2-3 seconds in total rendering
time. When designed incorrectly, rendering time can become much longer (more than 10 seconds).

Document Image Services (DIS), in combination with Accelerated Content Services (ACS) and Branch
Office Caching Services (BOCS), enable page serving for certain document formats with particular
document viewers. See the Document Image Services Deployment Guide and TaskSpace Deployment

EMC Documentum xCP 1.0 Performance Tuning Guide 51

Designing the Application

Guide for supported format and viewer combinations. For 6.5 SP2, DIS supports page serving for
PDF and TIFF document formats with both Daeja ViewOne Pro and IGC Brava! document viewers.
The following can cause long rendering time:
• The application server downloads the full document to the client instead of single pages. Large
documents exhibit a more pronounced impact. Configure ACS for page serving (Turning on
page serving, page 66).

• For Brava viewers, every request from the viewer goes to the Brava license viewer. Network
latency with the Brava license viewer can result is poor performance.

• First time viewing takes more time. Browser caching improves performance after the first time
view.

Checking ACS operation, page 79 provides information on measuring the performance of ACS
operations.

Using adaptors
Form templates specify how to handle data associated with the form, such as initial data values,
instructions for validating data a user enters, and storing the data when the form is submitted.
Adaptors help complete a form by providing data for certain fields. For example, an adaptor typically
populates a dropdown box with a list of countries, certain departments, or employees. Usually this
information is not hard coded into the dropdown (although it can be), and is brought over through a
query within the xCP system or from outside the system.

Designing adaptors

Forms open slowly when they contain too many adaptors, poorly written adaptors, or when there are
problems with an adaptors external data source (network latency).

• Defer execution of the adaptor to some other event than form initialization, for example, when
the user selects their inbox, or selects a tab or control. Deferring adaptor execution is especially
important when an adaptor provides dependent data, like state/city, as this information requires
multiple queries to the adaptor.

• Hard code values that do not change often, like country names, as they do not require much
maintenance.

• Design forms for single use cases and verify the necessity for adaptor execution in each use case.

• Avoid integrating with external systems – calls to external systems are synchronous and dependent
on the performance of the external system. If possible, implement an asynchronous solution that
mitigates getting real-time data across a network from a third-party system or database.

Measuring adaptor performance, page 78 provides information on measuring adaptor performance.

52 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing the Application

Managing group memberships
The number of groups tends to increase with the number of objects in an application. When users
belong to more than 250 groups, a threshold is reached and the DQL changes to accommodate the
number of groups they are in, which results in degraded performance.

The following DQL statement gets a count from the dm_process object:
select count(r_object_id) as c from dm_process (all) where r_object_id in
('4b0011ec8005c985','4b0011ec800af4fd','4b0011ec8000431a','4b0011ec80004319')
and any sd_element_type = '080011ec8007d38b' and any sd_element_type = '080011ec800042d9'

When the user belongs to 249 groups, the above DQL takes 0.032 seconds. When a user belongs to 251
groups, the above DQL takes 12.688 seconds (almost 400 times slower). The performance impact of
belonging to 250 or more groups affects most TaskSpace operations involving user object requests.

In addition to the 250 group membership threshold performance affect, every session the user creates
caches the groups for which the user is a member. When many users belonging to many groups use
the system, Content Server becomes consumed with caching groups for every new session, becomes
unable to service other requests, and the application can shut down.

Working around the 250 group threshold

The 250 group membership threshold can be overridden by setting the group limit environment
variable to something higher than 250, before hitting the 250 group threshold. Setting the group
limit parameter maintains the behavior of the DQL for less than 250 groups, until the specified
group limit is hit.

For example, using DM_GROUP_LIST_LIMIT=1,000, the query behavior stays the same until the
user has over 999 groups. Set the group limit as an operating system parameter on the Content Server
and restart Content Server for the setting takes effect. Figure 20, page 54 shows how the setting looks
in a Windows environment.

EMC Documentum xCP 1.0 Performance Tuning Guide 53

Designing the Application

Figure 20. Setting group limits

54 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 5
Designing Reports

This chapter provides guidelines for improving performance of BAM reports and includes the
following topics:

• Understanding BAM reporting, page 55

• Planning and testing, page 57

• Reporting on intra-activity events, page 57

• Synchronizing the BAM database, page 57

• Designing high performance reports, page 60

Understanding BAM reporting
By default, BAM monitors process and queue data (process and activity durations, information
about performers, queue data, and started/finished date information) in the audit trail database
table. Designers use Process Builder to configure additional data (activity package data and process
variable data) to be written to the audit trail database table. Designers use TaskSpace to configure
BAM to monitor the activity package data and process variable data in the audit trail database table.

During runtime, the Content Server process engine writes audited activity package data and process
variable data to the audit trail database table upon completion of the containing activity (Figure
21, page 56).

EMC Documentum xCP 1.0 Performance Tuning Guide 55

Designing Reports

Figure 21. BAM architecture

The BAM server controls operation of the event pipe and resulting transfer of data from the audit trail
database table to the BAM database integration table. Each row of the integration table contains data
about one process instance (activities, performers, queues, and business data). The format engine
extracts information from the integration table and maps it into different execution tables for the
different types of process instance data (activities, performers, queues, and business data).

The aggregation engine aggregates process instance data from the execution tables into groupings,
for which one or more arithmetic functions apply, and stores the groupings in an aggregation table.
The alert engine scans rows in the execution and aggregation databases and evaluates them for alert
conditions defined in Process Reporting Services (PRS). The alert engine adds process instances
(rows), that satisfy the alert condition, to the BAM database alert instance table.

56 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing Reports

Planning and testing
BAM reporting can be performance sensitive. To avoid performance issues, observe the following
guidelines during your planning:
• Plan for reporting at the beginning of the project.

• Conduct performance testing of your BAM reports in a test environment that simulates your
production environment regarding the following:

— a fully loaded BAM database

— anticipated volume of processes, activities, and audited business data

— high frequency report viewing

— multiple concurrent users.

Benchmark throughput and response time for your test environment under worst case scenarios.

• Size the BAM database to meet or exceed expected data throughput. Database requirements can
be sized using the BAM Dashboard Sizing Calculator spreadsheet, available in the BAM Database
Sizing Calculator folder of the bam-product-supplemental_files.zip file.

• Consider the size of the result set comprising the report. For reports with more than a few
hundred records, use Crystal Reports.

• Only audit and monitor process variables and packages that are reported on.

• Consider the number of entities queried when generating the report. If your result set is a few
hundred records, use more entities (up to 20). If your result set is thousand of records, limit the
number of entities to no more than five. The more columns selected, the fewer report entities used.

Reporting on intra-activity events
Content Server does not write activity data to the audit trail database table until an activity completes,
which can delay reporting on events happening within an activity, especially when your process
design consolidates multiple actions in the context of a single activity. To report on intra-activity
processes, divide the activity into multiple, more granular, activities in your process design.

Note: Creating more activities can have an adverse performance impact on workflow throughput
(Minimizing and consolidating activities, page 27).

Synchronizing the BAM database
BAM generates reports from BAM database tables. When the BAM database tables do not regularly
synchronize with the audit trail database, BAM report data can become stale. This section addresses

EMC Documentum xCP 1.0 Performance Tuning Guide 57

Designing Reports

issues related to BAM database and audit trail database table synchronization. The following
highlights some of these potential causes:
• BAM server is not sized correctly. Events can accumulate in the audit trail faster than the BAM
server can process them (Sizing the system, page 22).

• Network has performance problems.

• Gap filling is consuming system resources (Using the gap filler, page 58).

• BAM latency settings are too low (Configuring data transfer latency, page 58).

• BAM server is down or monitoring has been deactivated in TaskSpace (Understanding server
clock synchronization, page 59).

• Business data model is being updated (Updating business data (SDTs and package objects),
page 60).

Using the gap filler

Content Server continuously writes audited data to the audit trail database table regardless of
whether the BAM server monitors the data. When the BAM server goes offline, data transfer to the
BAM database does not occur and an information gap results between the BAM database and the
audit trail database.

To fill the information gap resulting from an offline BAM server, the gap filler feature can be invoked
when the BAM server comes back online. The gap filler feature instructs the BAM server to assimilate
the backlog of data, back to the time configured by the recovery period.

The gap filler takes time to assimilate the backlog of data. During this time, the gap filler uses
a substantial amount of system resources, which can affect system performance. For scenarios
requiring frequent gap filling, conduct the gap filling during system down time or off peak hours.

Configuring data transfer latency

The BAM server queries the audit trail database table every 5 seconds for events in the audit trail
database with time stamps 30 seconds earlier. The BAM server retrieves bundles of monitored event
data, occurring within the 5-second intervals, and writes the data to the integration database. For
example, a query issued at 1:20:00 retrieves events with time stamps from 1:19:25-1:19:30.

The default 30 second offset (data transfer latency) between the time of the BAM query and the time
stamp of audited events queried for, compensates for the latency between when an audited event
occurs and when Content Server writes event data to the audit trail database table. The 30-second
data transfer latency works for conditions where Content Server writes audited information to the
audit trail database table within a few seconds of activity completion.

Note: xCP versions before 6.6 use a default data transfer latency of zero seconds, instead of 30
seconds, which can easily result in missed report data. Configure the default data transfer latency to a
value appropriate for your system requirements and capability.

In high load environments (more than 100 concurrent workflow events), the latency between activity
completion and writing of audited data to the audit trail database can exceed 30 seconds, resulting in

58 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing Reports

missed report data. For example, if a query issued at 1:20:00 retrieves events with time stamps from
1:19:25-1:19:30, but those events do not arrive in the audit trail database until 1:19:45 (a 45-second
latency), the BAM query misses them. Subsequent BAM queries look for events with different time
stamps, so BAM never reports on the late arriving event data.

The 30-second default data transfer latency can be changed to accommodate longer latencies in
production environments. Use Documentum application system performance metrics to derive
system latencies so that you can configure the data transfer latency appropriately. Use TaskSpace to
configure the data transfer latency.

Note: Longer configured data transfer latencies, while ensuring completeness of monitored data,
result in longer delays for updated report data.

Increasing the BAM server step size

Every 5 seconds the BAM server runs the event pipe job that extracts data from the audit trail
database and inserts it into the BAM database. This five-second interval is the step size, and can be
adjusted in high volume environments.

Although there is no absolute definition, 500 events or more per minute is considered high volume.
Increasing the step size enhances performance in two ways:
• Although the BAM server runs the event pipe job less frequently, the job runs longer and more
efficiently.

• Since the job is running less frequently, the size of each transaction is larger than for a step size of 5
seconds. Larger transaction sizes also make the BAM server operate more efficiently.

The BAM server step size can be adjusted to any time period by substituting a value for "60" in the
following query. The following procedure increases the BAM server step size to 1 minute.
1. Shut down the BAM server.

2. Run the following query on the BAM database:
I_BAM_SERVER_CONFIG SET SCHEDULEPERIOD = 60 WHERE SERVERNAME = 'DCTMServer'

3. Restart the BAM server.

Understanding server clock synchronization

The Content Server, BAM application server, and BAM database server clocks must be synchronized
to within 5 seconds, with an outer limit of 30 seconds. In clustered environments the clocks between
each Content Server within the cluster must be synchronized. Lack of synchronization can result
is loss of BAM data.

Note: The BAM server clock synchronizes itself with the Content Server clock by reading the
timestamps of monitored data in the audit trail database.

EMC Documentum xCP 1.0 Performance Tuning Guide 59

Designing Reports

Updating business data (SDTs and package objects)

SDT and package object attributes can be aggregated and used as base entities in BAM reports.
In contrast, simple process variables cannot be aggregated and must be nested under a Process
Execution report entity. SDT and package object attributes can be updated in the BAM database when
there are changes. The update operation creates or modifies report entities and BAM database tables,
and can have a performance impact during the update operation.

Designing high performance reports
Design dashboards and reports to display necessary information only. The more data displayed in
BAM reports, the greater the demand on system resources.

Note: For high volume environments with greater than a few hundred records, use Crystal Reports.
For low volumes of process data consisting of a few hundred aggregated rows, use simple (PRS)
reports.

Defining report entities and filters

The entities specified in your reports define the queries run against the BAM database. The query
results comprise the report data. The larger the result set returned by the report queries, the greater
the utilization of system resources and potential impact to performance. Use the following guidelines
to minimize the size of your query results:
• Configure BAM to restrict the number of results returned in a report (Modifying the number
of records returned in a results set, page 61).

• Use filters to restrict the result set to the rows matching the filter condition. For example, when
the "Last Day" filter is used in a report, only a fraction of the data is queried and returned.
Another example similar in its benefit is the user/role wildcard filter, which only displays the
data related to the user viewing the report.

Note: Avoid creating complicated filter expressions. Every condition in the filter expression adds
complexity to the query, which slows down query performance.

Note: Custom filters for SDT and activity package data can require creation of additional database
indexes (Indexing the database, page 86).

• Configure initial/default filters to display reports with a predefined filter.

• Use mandatory filters to prevent reports with large volumes of data from displaying in the
dashboard.

• Configure reports to drill into other reports. Each report applies its own filters, which reduce the
volume of data processed by any one report.

Note: Dashboard (runtime) filters are executed in-memory, not in the database query, and are
less effective than PRS (design time) filters.

• Minimize the number of columns reported on for each entity.

60 EMC Documentum xCP 1.0 Performance Tuning Guide

Designing Reports

• Use database materialized views for reports with complex queries that require joins between
tables or calculations of the data. The database calculates views more effectively and quicker
than the report engine.

• Use Crystal Reports to create data analysis reports, such as pivoting, that require repetitive
filtering of data. For these types of reports, export report data to a .csv file and use tools such
as Microsoft Excel to generate pivot reports.

• Design performance sensitive reports in a separate dashboard so they do not affect response
time for the entire dashboard.

Modifying the number of records returned in a results
set

The number of records returned for a report can be increased or decreased by modifying the maxRows
parameter in the jdbc-config.xml configuration file. Controlling the number of records retrieved
is especially important for reporting, since large results sets can negatively affect system performance
and lead to an out-of-memory error. The BAM server returns 1,000 rows by default.

Note: When set to zero, the JDBC driver controls the maximum number of returned records.

Working across large data sets

To filter or sort across columns in different tables with large data sets, create a table that contains
columns from all the sorted or filtered tables. Create an index on that table. Performance improves at
the expense of storage and update overhead.

Using aggregation

Report summaries can be calculated from execution tables each time a report loads into the dashboard
or calculated in advance and saved in the aggregation table. Report summaries generated from
the aggregation table use less memory and provide shorter response time than report summaries
generated from execution tables, especially for execution tables containing thousands of rows of data.
Aggregation tables can be created for standard aggregation entities, custom entities, and business
data (SDTs and package objects).

Aggregating high volume data tables

Creating summaries of execution data in aggregation tables requires system resources and can
affect performance in high volume systems processing thousands of instances per day. In such
cases, aggregate report data every 5 minutes to strike a balance between providing real-time report
data, minimizing the system impact of generating reports directly from the execution tables, and
minimizing the system impact of running aggregation reports against large sets of report data.

EMC Documentum xCP 1.0 Performance Tuning Guide 61

Designing Reports

Using 5-minute aggregation enables near real-time dashboard reports by collapsing report data,
within each 5-minute time interval, into a single record. BAM then performs calculations on fewer
table rows than without aggregation. Also, since BAM aggregates report data every 5 minutes, the
aggregation process does not have to deal with as much data as when a 30-minute aggregation
interval is used. Provide additional performance improvement by filtering the aggregation report to
include current data only since the last time the aggregation engine ran.

Refreshing the dashboard

BAM dashboards can be configured to refresh after a certain interval of time. Refreshing a dashboard
consumes system resources. Choose a refresh interval that meets the business requirement to see
updated data and considers the frequency with which the data changes. For low volumes of long
running processes, a refresh interval of every few days can suffice. For have high volumes of rapidly
changing processes, use more frequent refresh intervals.

62 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 6
Configuring System Components

The database, Content Servers, and application servers can be configured to improve scalability and
performance. The following sections provide information for configuring these servers:

• Configuring the TaskSpace application, page 63

• Turning on page serving, page 66

• Configuring the BAM application server, page 67

• Configuring Content Server, page 67

• Configuring the BAM database, page 68

Configuring the TaskSpace application
The EMC Documentum TaskSpace Deployment Guide and EMC Documentum xCelerated Composition
Platform Best Practices Guide provide information on configuring the TaskSpace application server.
The following topics provide information for configuring the TaskSpace application.

Disabling drag and drop

Depending on form complexity, drag and drop can incur up to 5 seconds of performance overhead.
To disable drag and drop, set the <dragdrop> tag in the <TaskSpace home>\taskspace\app.xml
file to a value of false.
<dragdrop>

<!-- drag and drop is turned on by default -->
<enabled>false</enabled>

</dragdrop>

Disabling data-grid resizing

Resizing of data grids, like drag and drop, can incur a significant amount of performance overhead. If
you disable drag and drop and data-grid resizing, you can achieve an 18% improvement in response
time for task list rendering (Figure 22, page 64).

EMC Documentum xCP 1.0 Performance Tuning Guide 63

Configuring System Components

Disable data-grid resizing by adding the <columnresize> parameter in the <TaskSpace
home>\taskspace\app.xml file and setting the value to false.
…
<desktopui>

<datagrid>
…
<columnresize>false</columnresize>

</datagrid>
</desktopui>

…

Figure 22. Seconds saved by disabling drag and drop, and data grid resizing

Increasing cache time

TaskSpace client-side caching provides significant single-click performance improvement by reducing
the overall number (Figure 23, page 65) and size (Figure 24, page 65) of requests associated with
common transactions.

Set the value of the ClientCacheControl filter in the <TaskSpace home>\WEB-INF\web.xml file to
a high number as follows:
<filter>

<filter-name>ClientCacheControl</filter-name>
<filter-class>com.documentum.web.servlet.ResponseHeaderControlFilter</filter-class>
<init-param>

<param-name>Cache-Control</param-name>
<param-value>max-age=604800</param-value>

</init-param>

Configure the browser not to clear the cache when the browser closes.

64 EMC Documentum xCP 1.0 Performance Tuning Guide

Configuring System Components

Figure 23. Caching impact for number of requests

Figure 24. Caching impact for size of request

Caching also reduces response time associated with common transactions (Figure 25, page 66).

EMC Documentum xCP 1.0 Performance Tuning Guide 65

Configuring System Components

Figure 25. Caching impact for response time

Turning off Java annotations

TaskSpace does not support the Java annotation feature. The Java annotation feature can have a
significant TaskSpace performance impact (approximately 10%) on Tomcat 6.x and later application
servers. For Tomcat 6.x and later, turn off the annotation feature by setting the metadata-complete
parameter in the <TaskSpace home>\WEB-INF\web.xml file to true.

Note: You do not need to turn off the annotation feature for Tomcat 5.x and earlier.

Turning on page serving
The ACS page serving configuration provides a substantial performance improvement (Figure 26,
page 67) for document viewing.

66 EMC Documentum xCP 1.0 Performance Tuning Guide

Configuring System Components

Figure 26. Document viewing with ACS page serving

Set the following ACS configuration data in the
{clientserver}\webapps\taskspace\wdk\config\imaging\ ivf_config.xml
configuration file:
• Set Content Server ACS ON/OFF.

• Set Page Serving Level or Document Serving Level.

• Set Page Serving Level Threshold (in bytes).

Note: Not all file formats can use ACS.

Configuring the BAM application server
The EMC Documentum Business Activity Monitor Installation Guide provides general information on
configuring the BAM application server.

Configuring Content Server
The EMC Documentum Content Server Installation Guide provides general information on configuring
Content Server.

Turning off debugging

Process Engine debugging runs in the Java Method Server (JMS), a JBoss application server. Process
Engine debugging results in additional I/O and CPU resource consumption. By default, debugging
is on.

EMC Documentum xCP 1.0 Performance Tuning Guide 67

Configuring System Components

To turn off debugging, copy and paste the following to the <!-- Preserve messages in
a local file --> section of the $DOCUMENTUM\jboss4.2.0\server\DctmServer_
MethodServer\conf\jboss-log4j.xml file:

<appender name="FILE" class="org.jboss.logging.appender.DailyRollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.log.dir}/server.log"/>
<param name="Threshold" value="INFO"/>
<param name="Append" value="false"/>

<!-- Rollover at midnight each day -->
<param name="DatePattern" value="'.'yyyy-MM-dd"/>

<!-- Rollover at the top of each hour
<param name="DatePattern" value="'.'yyyy-MM-dd-HH"/>
-->

<layout class="org.apache.log4j.PatternLayout">
<!-- The default pattern: Date Priority [Category] Message\n -->
<param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>

<!-- The full pattern: Date MS Priority [Category] (Thread:NDC) Message\n
<param name="ConversionPattern" value="%d %-5r %-5p [%c] (%t:%x) %m%n"/>
-->

</layout>
</appender>

Disabling email notifications

To turn off mail notification, add MAIL_NOTIFICATION=F to the startup section of the
$DOCUMENTUM\dba\config\documentum\server.ini file. Restart the repository for the
changes to take effect.

Configuring the BAM database
The EMC Documentum Business Activity Monitor Installation Guide provides general information
on configuring the BAM database.

68 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 7
Measuring Performance

This chapter provides guidelines for measuring performance and includes the following topics:

• Measuring latency and throughput, page 69

• Measuring single user performance, page 71

• Running multi-user (load) tests, page 80

Measuring latency and throughput
Latency and throughput provide the two key Documentum system performance metrics. Latency
defines the minimum time required to get any kind of response, even one that requires no processing
time. Throughput defines the number of transactions the system can process per unit of time, 100
TaskSpace searches per minute, for example.

Single user and multi-user (load) testing comprise the approach for testing xCP performance. Single
user testing measures latency by capturing metrics for business transactions at the client tier (HTTP
request service times) or at the application server tier (Content Server RPC service times) on a quiet
system. Single user testing involves collecting and analyzing detailed trace files for DFC and/or
Oracle, and is performed before multi-user testing.

Multi-user testing builds on the single user testing by capturing service times for the same business
transactions used in single user testing, executed by multiple concurrent users. Multi-user testing
measures throughput by capturing "average" and "95th percentile" response times for a given
business transactions under a given user load while measuring coarse system statistics (CPU
utilization, network utilization, disk I/O, and so on). Multi-user testing response times can never
be any better than single user response times.

Single user testing can be used to measure the user experience from various locations (laptop via VPN
or remote facility, for example). User experience testing can account for network latency, browser
Javascript processing overhead, or other client machine activities such as virus scan, disk encryption,
or stateful firewalls. User experience testing use HTTP proxy tools (Charles, for example) to capture
HTTP requests and service times on the client browser machine. Load testing tools like WinRunner
(unlike LoadRunner) capture and measure the user experience but have to be carefully architected
to account for desired testing experience (network bandwidth, Javascript processing, virus scan,
disk encryption, stateful firewalls, and so on).

EMC Documentum xCP 1.0 Performance Tuning Guide 69

Measuring Performance

Troubleshooting high latency

Consider the case where a business transaction searches a large repository and TaskSpace is
configured to display 100 items per page. There can be so much data matching the search criteria that
it cannot all be cached in memory either by Oracle or by the storage array, in which case the query can
take 8 seconds to complete. Several factors can contribute to this situation.
• Many results per page amplifies the amount of processed data. The random nature of results
matching the search keyword indicates a low probability that Oracle or the storage array cashes
the results, especially if amount of data exceeds the available cache memory at either tier. In
the case being considered, the storage array is sized for 50,000 disk I/O per second, but is only
servicing about 800 physical disk I/Os in 8 seconds, so the storage array is not the problem.

• DQL select statements against custom object types generally execute as NESTED LOOPS with
TABLE ACCESS, the queries are not issued against an index.

• The Oracle execution plan is issuing 800 disk I/Os serially. Each I/O request runs against a 7200
RPM drive with 0.01-seconds service time per request. As a result, 800 physical disk I/Os issued
serially takes 800 * 0.01 = 8 seconds.

To improve the performance, do any or all of the following:
• Do less. Make the application retrieve less than 100 rows per page. Retrieving 50 rows per page
instead of 100 reduces the amount of data processed by 50% and reduces the service time by
the corresponding amount.

• Do something different. Create "covering indexes" and influence the execution plan to replace
TABLE ACCESS with INDEX ACCESS. Indexes are much smaller, packed tighter, more likely to
be cached, and can fit more easily into memory than a full table row. Getting data from an Oracle
buffer cache reduces service times by several orders of magnitude.

• Do it faster. Request more storage array cache and/or lower latency storage. If the Oracle data
storage used solid-state drives (SSD) with a latency of 0.001 seconds, the 8-second request takes
0.8 seconds.

Figure 27, page 71 illustrates the affect of latency on throughput.

70 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Figure 27. Single request executing three serial disk I/Os

Do not confuse latency for throughput. A query that runs in less than 1 second on a laptop can
generate 10,000 logical I/Os per execution on a production system if 1,000 concurrent users run
it every few seconds. A quick calculation shows that 1,000 users running the same query that
processes 10,000 logical I/Os ends up processing 76 GB of data (1,000 * 10,000 blocks * 8 KB/block).
Even if all data blocks are in memory (doubtful) and no CPU is used during the transactions (even
more doubtful), since backplanes transfer about 10-20 GB-second between memory and CPU, the
transactions take at least 4-8 seconds. In this case, single user latency numbers can be misleading
because the capacity is not available to support the transaction under a user load.

Measuring single user performance
To assess single user performance, collect DMCL/DFC traces on unit tests. The traces indicate how
much time is spent on Content Server executing the RPC versus the client, and how often a command
is called. The performance analyst can determine how much response time is spent on the Content
Server in comparison to the application server. Excess time spent issuing RPC commands indicates a
Content Server problem. Otherwise, a problem in the client side is indicated.

Single user testing captures DFC traces and helps determine if the problem is in the front of the
application server (such as the network, browser, and client PC) or behind the application server

EMC Documentum xCP 1.0 Performance Tuning Guide 71

Measuring Performance

(the back-end infrastructure from the application server down to disk drives). Single user testing
involves the following steps:
1. Determine the transactions to measure.

2. Prepare a quiet application server.

3. Warm up the system.

4. Turn on DFC tracing.

5. Execute the business transaction.

6. Turn off DFC tracing.

7. Process and analyze your trace files.

Determine transactions to measure — Determining the business transaction and breaking it into
distinct and separate steps is critical. There is no rule here other than your choice of what you wish to
measure and potentially improve. An example of a business transaction is "Hockey Team Canada
just won the gold medal, I must find a picture of the winning goal". This business transaction can
be broken into the following steps:
1. Search for keywords "hockey" and "canada" and display list of results.

2. Click the "get me next page" icon.

3. Click image to view properties.

4. Export the image to local drive for publication composition tools.

Prepare a quiet application server — Use a quiet application server to ensure your trace files do not
become contaminated by other users of the system. This requirement is especially important when
tracing is done on a production system or you are unable to declare the application server as off-limits.

Warm up the system — Warming up the system is like warming up the Oracle library cache.
Warming up the system makes sure one-time activities (caching of the BOF jar files, for example)
do not affect actual measurements. It is also critical that you use the correct data to avoid (or not)
caching at either the database layer (the Oracle buffer cache, for example) or the storage array layer
(the vmax cache, for example). For example, you can search for one keyword during warm-up and
another when collecting traces. This way, your results are unlikely to be in the database or storage
layer cache, unless you want to test response times when data is cached at these layers.

Turn on DFC trace — Turn on the DFC trace file collection by setting the following in
dfc.properties file:
tracing
dfc.tracing.enable=true
dfc.tracing.file_prefix=dam_prefix
dfc.tracing.include_rpcs=true
dfc.tracing.include_session_id=true
dfc.tracing.max_stack_depth=0
dfc.tracing.mode=compact
dfc.tracing.timing_style=seconds
dfc.tracing.verbose=true
dfc.tracing.verbosity=verbose

72 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Execute the business transaction — After the log file (specified as dam_prefix in the preceding
dfc.properties file) shows up in the logs directory, run your transaction. After completion of the
transaction, turn off DFC tracing and make a copy of the trace file.

Turn off DFC tracing — Turn off DFC tracing by disabling tracing, as shown in the following in
dfc.properties file:
tracing
dfc.tracing.enable=false
dfc.tracing.file_prefix=dam_prefix
dfc.tracing.include_rpcs=true
dfc.tracing.include_session_id=true
dfc.tracing.max_stack_depth=0
dfc.tracing.mode=compact
dfc.tracing.timing_style=seconds
dfc.tracing.verbose=true
dfc.tracing.verbosity=verbose

Determining RPC call source

To determine the location of RPC calls, configure your <TaskSpace home>\WEB-
INF\classes\log4j.properties and dfc.properties files to have the stack trace of the call
sent to the $DOCUMENTUM\log4j.log file as follows:

1. Turn on debugging in your log4.properties file as follows:

Note: You can use the following listing for all your log4j settings.
log4j.rootCategory=DEBUG, Console, File
log4j.category.MUTE=OFF
log4j.additivity.tracing=false

log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.threshold=WARN
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern=%d{ABSOLUTE} %5p [%t] %m%n

log4j.appender.File=org.apache.log4j.RollingFileAppender
log4j.appender.File.File=C:/documentum/logs/log4j.log
log4j.appender.File.MaxFileSize=100MB
log4j.appender.File.layout=org.apache.log4j.PatternLayout
log4j.appender.File.layout.ConversionPattern=%d{ABSOLUTE} %5p [%t] %m%n

2. Modify your dfc.properties file as follows:

Note: A large max_stack_depth is not necessary.

a. Update the application server dfc.properties file to enable tracing.

b. Set the method_name_filter to match the method calls to be captured.

c. Disable DEBUG messaging for the filter of interest by setting the log category to a string not
configured for debugging in the log4j.properties file.

For example:
dfc.tracing.enable=true
dfc.tracing.verbose=true

EMC Documentum xCP 1.0 Performance Tuning Guide 73

Measuring Performance

dfc.tracing.include_rpcs=true
dfc.tracing.max_stack_depth=1
dfc.tracing.method_name_filter=*.applyForObject()
dfc.tracing.print_stack_on_method_match=true
dfc.tracing.log.category[0]=garbage

3. View the log4j.log file. Stack traces are generated for matching filters.
20:40:27,214 DEBUG [main] com.documentum.fc.client.impl.connection.
docbase.netwise.NetwiseDocbaseRpcClient.applyForObject() Entered.
The current call stack is:
java.lang.Exception: EXCEPTION TO GET CALL STACK
at com.documentum.fc.client.impl.connection.docbase.netwise.
NetwiseDocbaseRpcClient.applyForObject(NetwiseDocbaseRpcClient.java)
at com.documentum.fc.client.impl.connection.docbase.
DocbaseConnection$8.evaluate(DocbaseConnection.java:1246)
at com.documentum.fc.client.impl.connection.docbase.DocbaseConnection.
evaluateRpc(DocbaseConnection.java:1014)
at com.documentum.fc.client.impl.connection.docbase.DocbaseConnection.
applyForObject(DocbaseConnection.java:1238)
at com.documentum.fc.client.impl.docbase.DocbaseApi.
parameterizedFetch(DocbaseApi.java:106)
at com.documentum.fc.client.impl.objectmanager.PersistentDataManager.
fetchFromServer(PersistentDataManager.java:194)
at com.documentum.fc.client.impl.objectmanager.PersistentDataManager.
getData(PersistentDataManager.java:92)
at com.documentum.fc.client.impl.objectmanager.PersistentObjectManager.
getObjectFromServer(PersistentObjectManager.java:355)
at com.documentum.fc.client.impl.objectmanager.PersistentObjectManager.
getObject(PersistentObjectManager.java:311)
at com.documentum.fc.client.impl.session.Session.getObjectWithCaching(Session.java:859)
at com.documentum.fc.client.impl.TypeManager.getType(TypeManager.java:58)
at com.documentum.fc.client.impl.session.Session.getType(Session.java:1215)
at com.documentum.fc.client.impl.session.SessionHandle.getType(SessionHandle.java:906)
at com.documentum.fc.client.DfPersistentObject.getType(DfPersistentObject.java:1297)
at com.documentum.fc.client.content.impl.storePicker.StoragePolicyHelper.
getStoragePolicy(StoragePolicyHelper.java:145)
at com.documentum.fc.client.content.impl.storePicker.StoragePolicyHelper.
determineStoreFromStoragePolicy(StoragePolicyHelper.java:30)
at com.documentum.fc.client.content.impl.storePicker.CheckinStorePicker.
determineStore(CheckinStorePicker.java:35)
at com.documentum.fc.client.content.impl.ContentManager.
prepareAContentForCheckin(ContentManager.java:1138)
at com.documentum.fc.client.content.impl.ContentManager.prepareForCheckin
(ContentManager.java:1112)
at com.documentum.fc.client.DfSysObject.doCheckinImpl(DfSysObject.java:878)
at com.documentum.fc.client.DfSysObject.doCheckin(DfSysObject.java:834)
at com.documentum.fc.client.DfSysObject.checkinEx(DfSysObject.java:800)
at com.documentum.fc.client.DfSysObject.checkin(DfSysObject.java:793)
at com.documentum.fc.client.DfDocument___PROXY.checkin(DfDocument___PROXY.java)
at com.documentum.dmcl.impl.CheckinHandler.get(CheckinHandler.java:33)
at com.documentum.dmcl.impl.DmclApi.get(DmclApi.java:41)
at com.documentum.dmcl.impl.DmclApiNativeAdapter.get(DmclApiNativeAdapter.java:136)
at com.documentum.dmcl.impl.DmclApiNativeAdapter.get(DmclApiNativeAdapter.java:122)

74 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Analyzing large queries

Collect the trace data and convert it to a Microsoft Excel friendly format using the
traceD6.awk script. The traceD6.awk script is available on the EMC Community Network
(https://community.emc.com/docs/DOC-6355).

Analyze the histogram report (Figure 28, page 75). Large queries are easy to identify.

Figure 28. Large query trace

****** TRACE_RPC_HIST (D6 VERSION) ****

DURATION (secs): 15.781
TIME SPENT EXECUTING RPCs (secs): 13.620 (which is 86.31 percent of total time)
Threads : 2
Connections : 1

****** PROFILE OF rpc CALLS *****

CALL YIELD % OF TOTAL AVERAGE TIME # OF
TIME (secs) RPC TIME PER RPC (secs) CALLS RPC NAME

0.006 0.0 0.006 1 closeCollection
0.883 6.5 0.009 100 ObjGetXPermit
7.981 58.6 0.319 25 EXEC_QUERY
0.247 1.8 0.002 100 ObjGetPermit
1.868 13.7 0.081 23 multiNext
2.635 19.3 0.026 101 SysObjFullFetch

**** QUERY RESPONSE SORTED IN DESCENDING ORDER ****

qry rsp query
3.511 select parent_id, count(parent_id) as rendition_count from dmr_content where
(ANY parent_id IN ('0902218e808a0731',...,'0902218e8010df71') and rendition != 0)
group by parent_id

3.237 select parent_id, count(parent_id) as rendition_count from dmr_content where
(ANY parent_id IN ('0902218e8010db86',...,'0902218e800df391') and rendition != 0)
group by parent_id

0.261 select headline,caption,source,r_object_id from cch_photo (all) where
r_object_id IN ('0902218e808a0731',...,'0902218e800df391')

...

From the trace, you can see that it takes 6.748 seconds to execute the one query twice with different
IDs. These two query executions, with runtimes of 3.511 seconds and 3.237 seconds, account for 85%
of the 7.981 seconds spent on all queries, 50% of the 13.620 seconds spent executing RPCs, and 42% of
the entire transaction time.

Analyzing process variable usage (measuring fetches)

Assess the number of object fetches in your application by running a DFC trace.
Use the object_breakdown.awk script, available on EMC Community Network
(https://community.emc.com/docs/DOC-6355), to produce a report that breaks down the types of
object fetches. The following provides a sample output of the object_breakdown.awk script:
****** Total number of object fetches per type *****

EMC Documentum xCP 1.0 Performance Tuning Guide 75

Measuring Performance

9 Unique Object Types Fetched
58 Total Objects Fetched
Fetches Type

1 rim7_record
1 dm_sysobject
1 dmc_wfsd_rim_sdt
23 dmc_wfsd_element_string
3 dmc_wfsd_type_info
1 dm_process
25 dmc_wfsd_element_parent
1 dmc_wfsd_element_integer
2 dm_activity

****** Total number of iscurrent calls per type *****
11 Unique Object Types IsCurrent Called
147 Total IsCurrent Calls
Fetches Type

23 dmc_wfsd_type_info
1 dmc_wfsd_rim_sdt
22 dm_activity
3 rim7_record
21 dm_process
27 dm_workflow
1 dm_relation
3 dmi_package
15 dmi_queue_item
1 dm_user
30 dmi_workitem

The report shows 25 parent objects being fetched (dmc_wfsd_element_string) along with
23 string process variables (dmc_wfsd_element_string) and 1 integer process variable
(dmc_wfsd_element_integer), for a total of 49 fetches. Consolidating the 23 string process
variables and 1 integer process variable into one SDT reduces the number of fetches by 46.

Analyzing query results processing

Query results processing adversely impacts performance as the result set size and query usage
increase. Analyze this issue by inspecting the raw DFC trace files. Look for the following type
of call sequence:
...
EXEC_QUERY RPC, e.g. select r_object_id from …
MultiNext RPC (gets up to 50 results)
SysObjectFullFetch (fist object)
SysObjectFullFetch (2nd object)
SysObjectFullFetch (3nd object)
...

Figure 29, page 77 shows how service times grow when using query and fetch instead of query
and collection.

Note: There can be situations where you cannot query and fetch code pattern.

76 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Figure 29. Result set sizes and service times

Change the application code to use collections instead of multiple fetches. For example, replace
retrievals with select r_object_id, attr1, attr2, … from … and replace updates with
update type … set attr1=…, set attr2=…, where ….

Analyzing many small RPC calls

For many small queries, run a histogram of trace data using the trace_rpc_histD6.awk script
(Figure 30, page 78). Focus your attention on high yield RPCs (highlighted rows in Figure 30,
page 78). Maximizing query yield, page 36 provides information on maximizing your query
yield. The trace_rpc_histD6.awk script is available on the EMC Community Network
(https://community.emc.com/docs/DOC-6355)

EMC Documentum xCP 1.0 Performance Tuning Guide 77

Measuring Performance

Figure 30. Histogram for many small queries

Measuring adaptor performance

There are two ways to understand the performance impact of your adaptors.
• Create a baseline (use DFC tracing, firebug, or a reverse proxy) and take away the adaptors 1 by 1.
Measure the improvement on form initialization after taking away all adaptors. This approach
provides you with the incremental cost of adding adaptors to the form.

• To isolate adaptor query performance from performance issues related to the containing form,
copy the query for each adaptor and run the query in IDQL or DA. Observe the response time.
Poor query performance can result from network latency or poorly written queries. The same
rules that apply to poorly written SQL or DQL apply to JDBC adaptors that query external
sources. Adaptors perform poorly if the adaptor queries contain leading wildcard filters or return
large amounts of data.
— Make the DQL query in your adaptor more selective.
[[i.e]&linkCreation=true&fromPageID=21234961"

class="createlink"linktype="raw"linktext="[[i.e]|[[i.e]">
[[i.e]&linkCreation=true&fromPageID=21234961"
class="createlink"linktype="raw" linktext="[i.e]|[i.e]">

78 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

[i.e]|[i.e]] it should return as few rows as possible.
Current Query select distinct sender from
[[dbo.vw_sender]&linkCreation=true&fromPageID=21234961"
class="createlink"linktype="raw" linktext="[[dbo.vw_sender]|[[dbo.vw_sender]">
[[dbo.vw_sender]&linkCreation=true&fromPageID=21234961"
class="createlink"linktype="raw" linktext="[dbo.vw_sender]|[dbo.vw_sender]">
[dbo.vw_sender]|[dbo.vw_sender]] where country like '%$

Unknown macro: {country}

' order by 1 Change the query to select distinct sender
from [[dbo.vw_sender]|[dbo.vw_sender]] where country = '$

' order by 1 Or the other option is to select a country by default

— Design adaptor queries to take advantage of available indexes or create indexes to
accommodate the DQL query.

Checking ACS operation

Check ACS operation as follows:
• Verify the ACS URL.

• Verify the ACS port.

• Observe the amount of data sent.

• Observe the time it takes to view a document.

Use a reverse proxy to ensure the ACS URL comes from the Java Method Server and includes ’ACS’
in the URL (Figure 31, page 79).

Figure 31. Verifying the ACS URL and port

View the image properties (Figure 32, page 80) and note the following:
• File URL contains the ACS port and the word ’getpage’.

• Page viewing time is reasonable.

• File length is in kilobytes.

• Network time and download rate rule out network issues.

EMC Documentum xCP 1.0 Performance Tuning Guide 79

Measuring Performance

Figure 32. ACS image properties in Daeja

Running multi-user (load) tests
In contrast to single user tests which focus on application design performance regarding transaction
latency, multi-user load tests focus on system performance while under the load of a full set of users.
Multi-user load testing provides the best way to simulate production environment performance
for current and future user volume. Multi-user testing exposes potential problems in system
configuration and sizing for the targeted user volume as evidenced by consumption of system
resources such as CPU time, memory heap, database connection, and network bandwidth. Ensure the
following SLAs are met during your multi-user load tests:
• Operation response times for the end-user community are acceptable.

• Hardware infrastructure provides adequate performance and capacity.

• Wide Area Network (WAN) condition meets expectations.

• Hardware growth expectation matches expected user growth volume.

Note: Do not use multi-user testing for functional testing of individual operations.

Develop an automated test harness — An automated testing harness is essential for efficiently
running consistent and repeatable multi-user performance tests, and for collecting performance
metrics during the test runs. The EMC Enterprise Engineering Performance Group uses HP Mercury
Load Runner and JMeter for all multi-user load testing.

Currently, there are no out-of-the-box xCP Load Runner test scripts available for customer use. The
EMC Customer Network (ECN) provides sample Load Runner scripts for the EMC Documentum
Webtop product (Figure 33, page 81).

80 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Figure 33. Sample Load Runner testing scripts for Webtop

Limit key operations — A few key operations typically characterize system workload. Restrict your
scripting to include this small set of key operations, preferably below 10. As user volume rises to
10,000, the number of recorded metrics increases. Recording metrics for many operations and users
can result in an uninterpretable volume of metrics.

Pre-load your test environment — Prepare and implement your data loading strategy before
running multi-user tests. Populate system data to simulate target user volume and queued tasks
during various state of the business process. Populate the repository with documents that are ready
for viewing by the application.

Backup and restore your test environment — Prepare and implement a backup and restore strategy
before running the multi-user tests. Create a backup of your pre-loaded test environment so that
multiple rounds of multi-user testing can be executed from the same starting point by restoring the
backup image. Restoring an image saves time because you do not need to repeat your data loading or
perform any data cleansing after each multi-user test.

Use an isolated near-production like environment — Conduct load tests on an isolated
near-production like environment. An isolated environment makes analysis of performance metrics
more valid as there are no confounding variables to deal with. Using a near-production like
environment increases the likelihood of finding the right level of configuration parameters for
production use.

Slowly ramp-up user volume — Slowly ramp-up user volume during multiple test runs. Data
captured during the slow ramp up process provides important information for calculating and
projecting capacity utilization. Ramp-up user load in a realistic fashion; such as one user per second.

EMC Documentum xCP 1.0 Performance Tuning Guide 81

Measuring Performance

Build in realistic idle time — Provide realistic idle time between user operations. Base your built-in
idle time on expectations of real-user behavior. Real-user delays between successive operations result
from "think time", coffee breaks, or other forms of distraction. Your testing scenario can bundle many
concurrent users to create high aggregate volume of incoming operation requests. However, the
better you can model each user session with the appropriate between operation delays, the better
your multi-user testing can approximate performance expectations for the production system.

Monitor coarse grain metrics — Setup monitors to record coarse grain performance metrics on all
hardware. Bottlenecks can occur in any tier of the hardware infrastructure. Conduct a more detailed
analysis of those areas indicated as a problem by the coarse grain performance metrics. The coarse
grain performance metrics are:
• CPU consumption of the servers

• memory consumption of the servers

• network bandwidth consumption

• response time of a few key operations

• I/O activities of the servers or storage.

Run peak volume in steady state — Run each multi-user test and record the result for a steady state
period of at least 30 minutes. Keep each multi-user test run within several hours, including the
ramp-up time for adding users. Figure 34, page 82 illustrates a multi-user test in which it took 1.5
hours to ramp-up 4,000 users, which then ran at the 4,000 user steady state for one hour.

Figure 34. Ramping up number of users

82 EMC Documentum xCP 1.0 Performance Tuning Guide

Measuring Performance

Analyzing multi-user tests

After completing your multi-user tests, analyze the following areas for bottlenecks:
• Determine which server or process consumed the most CPU or memory.

• Check the database server for queries that take a long time, deadlock or core dump alerts, and
top wait events. For Oracle user, use an AWR report for your analysis (See Assessing database
bottlenecks and dead waits, page 84).

• Check the J2EE layer for excessive garbage collections, which indicates a bottleneck in the
application server. If so, add additional JVM instances to improve load balancing.

• Check for bottlenecks indicated in the Content Server repository and BPM logs, and the
application server logs.

• Check for network bottlenecks indicated by bandwidth exhaustion or by exceeding the maximum
number of packets per second that can be transferred. Even though network bandwidth is not
exhausted, a typical network card can only handle definite number of packets a second. In this
case adding additional network cards can help.

When addressing a problem area, incrementally make one change at a time so that you can
understand the impact of the change, then rerun the test. Depending on the result of the rerun
test, you can either apply or reject your change.

Avoiding multi-user test worst practices

The following provides activities to avoid during multi-user testing:
• Do not turn on excessive logging or tracing. The volume of log files generated in a multi-user
load test makes analysis of results difficult.

• Do not synchronize users to execute an operation at the same time. Interpretation of these types of
results regarding the true capability of your system can be misleading.

• Avoid simulating super-users. Using a few super-users to process requests is not the same as
spreading the same number of requests over a larger set of normal-users. For the normal-user
scenario, each user creates a unique backend session with caching and history being tracked under
that particular session. The purging and reuse of cache data is based on the wall-clock request
time of that user session. A super-user session violates most of the built-in design algorithms
because request times are unrealistically condensed.

• Do not exceed 80% CPU usage or memory capacity on your servers. During normal usage,
operating systems require 20% excess capacity to handle naturally occurring usage spikes.
Red-lining servers generates results that are misleading and bring no value to the overall
validation of the system. Be prepared to add servers when 80% capacity is reached.

• Avoid running multi-user testing on unstable builds. Make sure your single user testing is
acceptable before doing multi-user testing.

EMC Documentum xCP 1.0 Performance Tuning Guide 83

Measuring Performance

Assessing database bottlenecks and dead waits

Bottleneck (Assessing capacity bottlenecks, page 84) and dead waits (Assessing dead waits, page 84)
indicate system sizing issues.

Assessing capacity bottlenecks

Capacity bottlenecks involve points in the system waiting for disk I/O to complete. For Oracle
databases, the DBWR (Database Writer) is a single point of serialization. Disk I/O directly relates to
the number of redo logs generated.

Logical I/O (LIO) can easily become Physical I/O (PIO) in a large volume system. At a certain point,
you can no longer cache.

A full index scan of 10 million table rows, with index that has 256 bytes per row, still reads 2.3 GB of
index data, which puts demands on resources (CPU, memory, disk I/O).
• Look for heavy LIO/PIO service activity in the database statspack.

• Look at AUTOTRACE execution paths and statement statistics for suspect queries.

• Figure out how often LIO/PIO statistics get run with number of users on the system and
extrapolate the I/O load on the system.

Assessing dead waits

Dead waits occur when multiple processes (or users) try to update a locked database row, resulting in
a race condition. Asynchronous event handling can also cause race conditions, even if your process
design effectively partitions the workload.

Carefully design your process to partition the workload and ensure workload partitioned updates do
not conflict with agent-based updates.

84 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 8
Maintaining the Repository and BAM
Databases

This chapter provides guidelines for maintaining the system databases and includes the following
topics:

• Maintaining the repository database, page 85

• Maintaining the BAM database, page 86

xCP applications frequently query databases for process data. Over time, the database tables can
grow significantly, which affects query and application performance. Periodic maintenance of the
repository and BAM databases can help keep application performance at the same levels as when the
application was new.

Maintaining the repository database
Periodic database maintenance can prevent significant and sudden reductions in system performance
(throughput or response time). The following workflow processing and task lookup tables cause
roughly 80% of database performance problems.
• Dm_workflow_s

• Dm_sysobject_s

• Dm_process_s

• Dmi_workitem_s

• Dmi_queue_item_s

These tables usually have many inserts and deletes and can become quickly fragmented. If you
notice performance issues, examine the statistics for the table indexes. Pay close attention to the
dmi_queue_item_s, which can quickly grow into millions of rows. Existence of any entries that
have the user name dm_fulltext_index_user indicates a problem.

Note: If your system does not use the embedded xCP full-text search server, disable the system from
writing entries to the dmi_queue_item_s table.

EMC Documentum xCP 1.0 Performance Tuning Guide 85

Maintaining the Repository and BAM Databases

If the repository does not use an index agent, prevent Content-Server from generating queue items
for the user name dm_fulltext_index_user as follows:
1. Go to $DM_HOME/install/tools folder on the Content Server host.

2. Run the unresigertype.ebs script to unregister the events for dm_sysobject:
cmd>dmbasic -funregistertype.ebs -emain1 – <docbase> <username>
<password> dm_sysobject.

To delete existing queue items created for full-text user, run the following:
API>query,c,delete dmi_queue_item objects where name = 'dm_fulltext_index_user'

If creating many groups and assigning users to those groups, pay close attention to the following
tables:
• Dm_group_r

• Dm_group_s

Note: Keep user group membership under 1,000 (Managing group memberships, page 53).

Pay close attention to the following workflow-related tables:
• Dmc_wfsd_type_info_s

• Dmc_wfsd_type_info_s

• Dmc_wfsd_element_parent_s

• Dmc_wfsd_element_s

• Dmc_wfsd_<the SDT name in your workflow>

• Dmc_wfsd_element_string_s

Pay close attention to the dm_audittrail table. Make sure that there is some archiving strategy
for the audit trail table.

See the Optimizing Oracle for EMC Documentum Best Practices Planning Guide (
http://powerlink.emc.com/km/live1//en_US/Offering_Technical/White_Paper/h5962-optimizing-
oracle-for-documentum-wp.pdf) for tuning Oracle databases.

Maintaining the BAM database
In production environments, database administrators monitor and periodically adjust the BAM
database table space using the tools provided by the database vendor. If necessary, BAM database
tables can be purged.

Indexing the database

Create indexes for SDT and custom entities. Copy the PRS report queries, for the SDTs and custom
entities requiring indexing, and send these report queries to the DBA for optimization. Index
mandatory filters and date fields. Limit the number of indexes to 6-7 per database table.

Note: BAM indexes out of the box entities such as ’Process Execution’.

86 EMC Documentum xCP 1.0 Performance Tuning Guide

Maintaining the Repository and BAM Databases

Purging and archiving the database

Performance problems can result from BAM database tables that grow quickly in high volume
applications. The rate data accumulate depends on the number of active processes, the number of
auditable events, and the number of data objects monitored by BAM, written to the BAM database
and extracted for the BAM dashboard.

Develop a strategy for purging the BAM database. What to purge and how often to purge depends on
how quickly the BAM database fills up and how long data must be retained for reporting purposes.
(See the BAM Implementation Guide for details.)

Note: Properly indexed tables can retain more data before affecting performance and requiring
maintenance.

Applying retention policies

Define a retention policy to archive or purge historical data from the database. The DBA manually
executes a retention policy or sets the retention policy to execute automatically by scheduling
jobs. The retention policy for aggregation tables can be less aggressive than for execution tables as
aggregation tables grow more slowly.

Purging the entire database

Periodically generate a dump file of the BAM database, then purge the entire BAM database. If
necessary, historic data can be restored. Depending on business need and the volume of process data,
create a snapshot (a dump file) of the BAM database every three or six months.

Purging selective portions of the database

Selectively purge large execution and aggregation tables of data that operational reports no longer
need. The BAM database provides instance level tables and nine types of aggregation tables. Over the
course of a single day, for example, the 5-minute aggregation table can hold 288 rows, 2016 rows over
a week, and 105,210 rows over a year. After a few months, the 5-minute aggregation data becomes
irrelevant, so purging this table every six months make sense. The same can be said of the 15-minute
aggregation table, although this table holds less data than the 5-minute aggregation table, with 35,040
rows per year compared to 105,210 rows for the 5-minute aggregation table.

EMC Documentum xCP 1.0 Performance Tuning Guide 87

Maintaining the Repository and BAM Databases

88 EMC Documentum xCP 1.0 Performance Tuning Guide

Chapter 9
Troubleshooting

This chapter provides a listing of the most common performance-related problems known to occur
and links to the topics in the main body of the document that address the issue.

Symptom Cause (Action)

Problem with form adaptor(s) (Using adaptors,
page 52).

Form uses process variables instead of SDTs
(Designing the process object model (using
structured datatypes), page 37).

Form is too large (Minimizing form size, page
40).

Problem with document viewing (Embedding
documents (document viewing), page 51).

Too long to open form

Form embeds audit trail information (Using task
history (audit trail), page 51).

Too long to view document Problem with document viewing (Embedding
documents (document viewing), page 51).

Work queues, skill set matching, and priorities
not designed properly (Designing task lists
(work queues), page 47).

Too long to execute get next task
Problem with get next task procedure
(Troubleshooting the get next task function,
page 49).

Too many results returned from task list query
(Using search restrictions, page 45).

Search criteria not specific enough (using case
insensitive partial keyword search) (Using
search criteria, page 43).

Too much processing on each row in task list
(Rendering task lists, page 49).

Task list query filters and sorts across multiple
large database tables (Changing the default date
attribute for sorting a task list, page 51).

Too long to render task list

EMC Documentum xCP 1.0 Performance Tuning Guide 89

Troubleshooting

Symptom Cause (Action)

Drag and drop is enabled (Disabling drag and
drop, page 63).

Custom preconditions are set on each row in
task list (Avoiding unnecessary preconditions,
page 50).

In-between (automated) activities take too long
(Configuring the workflow agent (polling), page
29).

Too many activities ahead of you (Minimizing
and consolidating activities, page 27).

Polling interval too long or too short
(Configuring the polling interval, page 31).

Too long to see workflow task after completion
of activity

Wrong number of workflow threads orworkflow
agents (Increasing workflow threads and adding
Content Servers, page 28).

Single workflow instance takes too long to
complete (Maximizing throughput across all
workflow instances, page 28).

Manual activity workload not partitioned
properly (Avoiding manual bottlenecks, page
32).

Wrong number of workflow threads orworkflow
agents (Increasing workflow threads and adding
Content Servers, page 28).

Too long to complete many end-to-end
workflows (not enough throughput)

System not sized properly (Increasing workflow
threads and adding Content Servers, page 28).

Too many results returned from query
(Restricting advanced search results, page 46).

Search criteria not specific enough (using case
insensitive partial keyword search) (Using
search criteria, page 43).

Querying across multiple database tables
(Designing the process object model (using
structured datatypes), page 37.

Drag and drop is enabled (Disabling drag and
drop, page 63).

Document search takes too long

Custom preconditions are applied to query
results (Avoiding unnecessary preconditions,
page 50).

90 EMC Documentum xCP 1.0 Performance Tuning Guide

Troubleshooting

Symptom Cause (Action)

Publishing too much metadata to audit trail and
BAM database (Planning and testing, page 57).

Dashboards and reports not designed for
performance (Designing high performance
reports, page 60).BAM dashboard takes too long to load

BAM database not configured (optimized)
for metrics reported in BAM dashboard
(Maintaining the BAM database, page 86).

Business data reported in BAM dashboard
is only updated when an activity completes
(Reporting on intra-activity events, page 57).

BAM database and audit trail synchronization
issue (Synchronizing the BAM database, page
57).

BAM dashboard not updated fast enough

Problems with BAM database capacity
(Maintaining the BAM database, page 86).

Database not maintained (Chapter 8,
Maintaining the Repository and BAM
Databases).Performance degrades
System not sized to meet growing demands
(Sizing the system, page 22).

System sized for average not peak loads
(Planning for peak or average loads, page 15).

System workload not balanced (jobs, human
work) (Balancing system load, page 13).

Individual user activity puts excessive demands
on system (Preventing high load user actions,
page 36).

Inconsistent performance over time

System sharing resourceswith other applications
(Avoiding resource sharing, page 14).

Some users belong to too many groups
(Managing group memberships, page 53).

Client is sharing system resources with other
applications (Avoiding resource sharing, page
14).

Inconsistent performance for different users

EMC Documentum xCP 1.0 Performance Tuning Guide 91

Troubleshooting

Symptom Cause (Action)

Skill set matching, priorities, and queues not
configured properly (Designing task lists (work
queues), page 47).

92 EMC Documentum xCP 1.0 Performance Tuning Guide

Index

A
activities

consolidating, 27, 57
reporting on, 57

activity precedence
user impact, 28

activity processing
details, 27

adaptors
described, 52
measuring performance, 78
using, 52

aggregation
described, 61
for high volume tables, 61

agile development
in software development lifecycle, 12

annotations
performance impact, 66
turning off, 66

application server configuration
TaskSpace, 63

attributes
designing search for, 42

audit trail
guidelines, 51

average load
sizing for, 15

B
BAM

described, 55
planning and testing, 57

BAM dashboard not updated fast enough
troubleshooting, 91

BAM dashboard takes too long to load
troubleshooting, 91

BAM database
BAM server step size, 59
clock synchronization, 59

complete purge, 87
data transfer latency, 58
gap filler, 58
indexing, 86
maintaining, 86
purging and archiving, 87
retention policies, 87
selective purging, 87
synchronization, 57

BAM entities and filters
using, 60

bottlenecks
areas prone to, 14
manual, 32
measuring, 84

build
software development lifecycle, 11

business case
software development lifecycle, 11

C
cache time

performance impact, 64
capacity

workflow thread, 27
collections

measuring performance of, 76
composite indexes

performance impact, 38
conditional search

composite index, 38
configuration

system, 63
workflow agent, 29

consolidating activities, 27
Content Server

adding, 28
capacity, 28
configuration, 29, 67
for TaskSpace, 29

EMC Documentum xCP 1.0 Performance Tuning Guide 93

Index

content types
sizing for, 17

customizations
TaskSpace, 50

D
data-grid resizing

performance impact, 63
turning off, 63

database
BAM, 55
maintaining, 85
object representation, 38

dead waits
avoiding, 84

debugging
performance impact, 67
turning off, 67

design
software development lifecycle, 11

DFC trace, 69
document search takes too long

troubleshooting, 90
document viewing

described, 51
DQL

using, 45
drag and drop

performance impact, 63
turning off, 63

E
email notifications

performance impact, 68
turning off, 68

example configurations
high user load, high automatic task

throughput, 33
high user load, low automatic task

throughput, 33
low user load, high automatic task

throughput, 33
on-demand processing, 32
workflow agent, 32

F
fetching

measuring performance of, 76

object model, 39
performance impact, 39
performance measurement, 75

form size
performance impact, 40

G
gap filler

described, 58
general guidelines

software tuning, 13
get next task

troubleshooting, 49
group membership

250 threshold, 53
workaround for 250 group

threshold, 53

H
heap size

performance impact, 63
hiding process variables

performance impact, 39
high user load, high automatic task

throughput
example configurations, 33

high user load, low automatic task
throughput
example configurations, 33

I
implementation

software development lifecycle, 11
inconsistent performance for different

users
troubleshooting, 91

inconsistent performance over time
troubleshooting, 91

iterative methodology, 13

J
JVM

dedicate to application, 14

L
large result set

94 EMC Documentum xCP 1.0 Performance Tuning Guide

Index

constraining, 49
latency

and single user testing, 69
data transfer, 58
performance measure, 69
troubleshooting, 70

load balancing
addressing bottlenecks, 14
process for, 13

load testing
analyzing, 83
and throughput, 69
measuring performance, 80
worst practices, 83

login
performance workaround, 36

low user load, high automatic task
throughput
example configurations, 33

M
maximizing throughput

impact on user tasks, 28
measuring performance

fetching, 75
large queries, 75
load testing, 80
many RPC calls, 77
query results processing, 76
single user, 71

multi-user tests
analyzing, 83
worst practices, 83

multiple Content Servers
polling interval, 31

O
object model

database representation, 38
fetching, 39
performance impact, 37

on-demand processing
configuring, 31
described, 29
example configurations, 32

P
page serving

checking for, 79
configuring for, 66

peak load
sizing for, 15

performance
measuring, 69

performance configuration
annotations, 66
cache time, 64
Content Server, 67
data-grid resizing, 63
debugging, 67
drag and drop, 63
email notifications, 68
TaskSpace, 29
TaskSpace application server, 63

performance degrades
troubleshooting, 91

performance impact, 30 to 31
adaptors, 52
aggregation, 61
audit trail, 51
composite indexes, 38
consolidating activities, 27, 57
database maintenance, 85
document viewing, 51
embedding documents, 51
fetching, 39
form size, 40
group membership, 53
hiding process variables, 39
large result sets, 49
login, 36
manual bottlenecks, 32
object model, 37
page serving, 66
partitioned work queues, 49
polling interval, 30 to 31
preconditions, 50
search criteria, 44
search restrictions, 45
searchable attributes, 43
skill-set matching, 48
sorting and filtering large database

tables, 51
task history, 51
updating business data, 60
user actions, 36
work queues, 47

performance measures

EMC Documentum xCP 1.0 Performance Tuning Guide 95

Index

latency, 69
throughput, 69

performance problems
troubleshooting, 89

polling
described, 29

polling interval, 30 to 31
configuring, 31
multiple Content Servers, 31

preconditions
performance impact, 50

process variables
converting, 40
hiding, 39
types of, 37

Q
queries

maximizing yield, 36
measuring performance of, 75

query results processing
measuring performance of, 76

R
report synchronization

BAM server step size, 59
data transfer latency, 58
gap filler, 58
server clocks, 59

reports
constraining the results set, 61
designing, 60
filtering and sorting, 61
guidelines, 60
refreshing, 62

repository database
maintaining, 85

requirements
software development lifecycle, 11
throughput, 26

resource sharing
performance impact, 14

retention policies
BAM database, 87

RPC calls
determining the source of, 73
measuring performance of, 77

S
SDTs

updating, 60
search

advanced, 45
designing, 42

search criteria
designing search for, 43
performance impact, 44

search restrictions
designing for, 45
designing for advanced, 46
performance impact, 45

searchable attributes
performance impact, 43

searches
composite index, 38

server clocks
synchronizing, 59

simple process variables
converting to SDTs, 40

single user
measuring performance, 71

single user testing
and latency, 69

sizing
capacity planning for, 18
documents for, 22
for content types, 17
for peak loads, 15
for workflow database tables, 17

skill-set matching
designing, 48
performance impact, 48

software development lifecycle
agile development, 12
phases of, 11

software tuning
general guidelines, 13

solution design
general guidelines, 35

symptoms
troubleshooting, 89

system configuration, 63

T
task history

guidelines, 51
task lists

96 EMC Documentum xCP 1.0 Performance Tuning Guide

Index

general guidelines, 49
get next task, 49
large database tables, 51
large result set, 49
sorting and filtering, 51
work queue partitioning, 49

TaskSpace application server
configuration, 63

test
software development lifecycle, 11

throughput
and load testing, 69
described, 25
increasing, 30
maximizing, 28
performance measure, 69
requirements, 26
workflow thread capacity, 27

too long to complete many end-to-end
workflows
troubleshooting, 90

too long to execute get next task
troubleshooting, 89

too long to open form
troubleshooting, 89

too long to render task list
troubleshooting, 89

too long to see workflow task after
completion of activity
troubleshooting, 90

too long to view document
troubleshooting, 89

troubleshooting
BAM dashboard not updated fast

enough, 91
BAM dashboard takes too long to

load, 91
document search takes too long, 90
high latency, 70
inconsistent performance for different

users, 91
inconsistent performance over time, 91
performance degrades, 91
too long to complete many end-to-end

workflows, 90

too long to execute get next task, 89
too long to open form, 89
too long to render task list, 89
too long to see workflow task after

completion of activity, 90
too long to view document, 89

U
user actions

performance impact, 36
user tasks

activity precedence, 28

V
virtual machines

simulating production
environment, 13

W
work queues

and load balancing, 25
designing, 47
partitioning of, 49
performance impact, 47

workflow agent
configuration, 29
example configurations, 32

workflow database tables
sizing for, 17

workflow threads
adding, 28
capacity, 27
on TaskSpace Content Server, 29

worksheet
for capacity planning, 18

worst practices
multi-user tests, 83

Y
yield

for queries, 36

EMC Documentum xCP 1.0 Performance Tuning Guide 97

	EMC Documentum xCelerated Composition Platform
	Preface
	Intended Audience
	Revision History

	Overview
	Software development lifecycle
	Figure 1. Performance tuning software development lifecycle
	Using iterative development
	Figure 2. Iterative performance improvement

	General guidelines
	Tuning the software first
	Balancing system load
	Addressing bottlenecks

	Avoiding resource sharing

	Planning Capacity and Sizing
	Planning for peak or average loads
	Figure 3. Peak versus average loads
	Figure 4. Average must be within capacity

	Planning for workflow database tables
	Figure 5. Cycle time versus throughput

	Characterizing content
	Capacity planning worksheet
	Sizing the system

	Maximizing Process Throughput
	Understanding workflow throughput
	Figure 6. Workflow throughput

	Assessing activity creation rate
	Minimizing and consolidating activities

	Assessing activity completion rate
	Understanding activity completion
	Increasing workflow threads and adding Content Servers
	Maximizing throughput across all workflow instances
	Figure 7. Simple workflow

	Increasing workflow threads on the TaskSpace Content Server
	Dedicating a Content Server to TaskSpace

	Configuring the workflow agent (polling)
	Increasing throughput for single or low volume workflows
	Figure 8. Single workflow

	Increasing polling intervals for multiple Content Servers
	Configuring the polling interval
	Configuring for on-demand processing

	Avoiding manual bottlenecks
	Figure 9. Potential manual bottlenecks

	Sample workflow agent configurations

	Designing the Application
	General design guidelines
	Preventing high load user actions
	Improving login speed
	Maximizing query yield
	Figure 10. Query yield

	Designing the process object model (using structured datatypes)
	Figure 11. Separate data tables for different process variable t
	Figure 12. Single table representation for an SDT
	Creating composite indexes
	Minimizing fetch operations
	Hiding unused variables
	Figure 13. Hiding a process variable

	Converting simple process variables to SDTs
	Minimizing form size
	Figure 14. Sample form

	Designing search forms
	Using searchable attributes
	Figure 15. Mapping object type attributes to columns in which se

	Using search criteria
	Figure 16. Specifying search criteria

	Using search restrictions
	Figure 17. Configuring search restrictions

	Using advanced searches
	Figure 18. Interface for manually defining search queries

	Restricting advanced search results

	Designing task lists (work queues)
	Figure 19. Processing for unselective and selective work queues
	Designing skill-set matching

	Rendering task lists
	Filtering a task list and partitioning a work queue
	Troubleshooting the get next task function
	Constraining query results for large result sets
	Avoiding unnecessary preconditions
	Changing the default date attribute for sorting a task list

	Using task history (audit trail)
	Embedding documents (document viewing)
	Using adaptors
	Designing adaptors

	Managing group memberships
	Working around the 250 group threshold
	Figure 20. Setting group limits

	Designing Reports
	Understanding BAM reporting
	Figure 21. BAM architecture

	Planning and testing
	Reporting on intra-activity events
	Synchronizing the BAM database
	Using the gap filler
	Configuring data transfer latency
	Increasing the BAM server step size
	Understanding server clock synchronization
	Updating business data (SDTs and package objects)

	Designing high performance reports
	Defining report entities and filters
	Modifying the number of records returned in a results set
	Working across large data sets
	Using aggregation
	Aggregating high volume data tables

	Refreshing the dashboard

	Configuring System Components
	Configuring the TaskSpace application
	Disabling drag and drop
	Disabling data-grid resizing
	Figure 22. Seconds saved by disabling drag and drop, and data gr

	Increasing cache time
	Figure 23. Caching impact for number of requests
	Figure 24. Caching impact for size of request
	Figure 25. Caching impact for response time

	Turning off Java annotations

	Turning on page serving
	Figure 26. Document viewing with ACS page serving

	Configuring the BAM application server
	Configuring Content Server
	Turning off debugging
	Disabling email notifications

	Configuring the BAM database

	Measuring Performance
	Measuring latency and throughput
	Troubleshooting high latency
	Figure 27. Single request executing three serial disk I/Os

	Measuring single user performance
	Determining RPC call source
	Analyzing large queries
	Figure 28. Large query trace

	Analyzing process variable usage (measuring fetches)
	Analyzing query results processing
	Figure 29. Result set sizes and service times

	Analyzing many small RPC calls
	Figure 30. Histogram for many small queries

	Measuring adaptor performance
	Checking ACS operation
	Figure 31. Verifying the ACS URL and port
	Figure 32. ACS image properties in Daeja

	Running multi-user (load) tests
	Figure 33. Sample Load Runner testing scripts for Webtop
	Figure 34. Ramping up number of users
	Analyzing multi-user tests
	Avoiding multi-user test worst practices
	Assessing database bottlenecks and dead waits
	Assessing capacity bottlenecks
	Assessing dead waits

	Maintaining the Repository and BAM Databases
	Maintaining the repository database
	Maintaining the BAM database
	Indexing the database
	Purging and archiving the database
	Applying retention policies
	Purging the entire database
	Purging selective portions of the database

	Troubleshooting

